Healthy Clinical Trial
— ADHDmicroNFBOfficial title:
Effects of EEG- Microstate Neurofeedback on Attention and Impulsivity in Adult Attention-deficit/Hyperactivity Disorder (ADHD) and Neurotypical Controls
EEG neurofeedback (NFB) may represent a new therapeutic opportunity for ADHD, a neuropsychiatric disorder characterized by attentional deficits and high impulsivity. Recent research of the Geneva group has demonstrated the ability of ADHD patients to control specific features of their EEG (notably alpha desynchronization) and that this control was associated with reduced impulsivity. In addition, alterations in EEG brain microstates (i.e., recurrent stable periods of short duration) have been described in adult ADHD patients, potentially representing a biomarker of the disorder. The present study aims to use neurofeedback to manipulate EEG microstates in ADHD patients and healthy controls, in order to observe the effects on neurophysiological, clinical and behavioural parameters.
Status | Recruiting |
Enrollment | 60 |
Est. completion date | June 2025 |
Est. primary completion date | June 2025 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 50 Years |
Eligibility | ADHD POPULATION GROUP A subject will be eligible if all the following criteria apply: - Age: between 18-50 years - Gender: male and female - Health: general good health and normal or corrected-to-normal visual acuity - Patients clinically able to stop the following psychotropic medications for 48h: psychostimulants, benzodiazepines - Having provided written informed written consent A subject will not be eligible if any of the following criteria apply: - Past or current history of a clinically significant central nervous system disorder, including structural brain abnormalities; cerebrovascular disease; history of other neurological disease, epilepsy, stroke or head trauma (defined as loss of consciousness > 5 min or requiring hospitalization) - Impaired vision (normal or corrected acuity below 20/40) - Medical illness (e.g., cardiovascular disease, renal failure, hepatic dysfunction) - Comorbidities with current psychiatric disorders (bipolar disorder, borderline personality disorder, major depressive disorder, anxiety disorder) including substance use disorder as defined by the DIGS. HEALTHY POPULATION GROUP A subject will be eligible if all of the following criteria apply: - Age: between 18-50 years - Gender: male and female - Health: general good health and normal or corrected-to-normal visual acuity - Having provided written informed written consent A subject will not be eligible if any of the following criteria apply: - Past or current history of ADHD - Past or current history of main psychiatric disorders (bipolar disorder, borderline personality disorder, major depressive disorder, anxiety disorder), including substance use disorder as defined by the DIGS. - Past or current history of a clinically significant central nervous system disorder, including structural brain abnormalities; cerebrovascular disease; history of other neurological disease, including epilepsy, stroke or head trauma (defined as loss of consciousness > 5 min or requiring hospitalization) - Impaired vision (normal or corrected acuity below 20/40) - Medical illness (e.g., cardiovascular disease, renal failure, hepatic dysfunction) |
Country | Name | City | State |
---|---|---|---|
Switzerland | TRE Unit (Trouble de la Régulation Emotionnelle) Department of psychiatry, HUG | Geneva |
Lead Sponsor | Collaborator |
---|---|
Nader Perroud | University Hospital, Geneva, University of Geneva, Switzerland |
Switzerland,
Arns M, Conners CK, Kraemer HC. A decade of EEG Theta/Beta Ratio Research in ADHD: a meta-analysis. J Atten Disord. 2013 Jul;17(5):374-83. doi: 10.1177/1087054712460087. Epub 2012 Oct 19. — View Citation
Arns M, de Ridder S, Strehl U, Breteler M, Coenen A. Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin EEG Neurosci. 2009 Jul;40(3):180-9. doi: 10.1177/155005940904000311. — View Citation
Arns M, Kenemans JL. Neurofeedback in ADHD and insomnia: vigilance stabilization through sleep spindles and circadian networks. Neurosci Biobehav Rev. 2014 Jul;44:183-94. doi: 10.1016/j.neubiorev.2012.10.006. Epub 2012 Oct 23. — View Citation
Arns M, Vollebregt MA, Palmer D, Spooner C, Gordon E, Kohn M, Clarke S, Elliott GR, Buitelaar JK. Electroencephalographic biomarkers as predictors of methylphenidate response in attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol. 2018 Aug;28(8):881-891. doi: 10.1016/j.euroneuro.2018.06.002. Epub 2018 Jun 22. — View Citation
Brechet L, Brunet D, Birot G, Gruetter R, Michel CM, Jorge J. Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. Neuroimage. 2019 Jul 1;194:82-92. doi: 10.1016/j.neuroimage.2019.03.029. Epub 2019 Mar 19. — View Citation
Breteler MH, Arns M, Peters S, Giepmans I, Verhoeven L. Improvements in spelling after QEEG-based neurofeedback in dyslexia: a randomized controlled treatment study. Appl Psychophysiol Biofeedback. 2010 Mar;35(1):5-11. doi: 10.1007/s10484-009-9105-2. Epub 2009 Aug 27. Erratum In: Appl Psychophysiol Biofeedback. 2010 Jun;35(2):187. — View Citation
Britz J, Van De Ville D, Michel CM. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage. 2010 Oct 1;52(4):1162-70. doi: 10.1016/j.neuroimage.2010.02.052. Epub 2010 Feb 24. — View Citation
Cannon R, Congedo M, Lubar J, Hutchens T. Differentiating a network of executive attention: LORETA neurofeedback in anterior cingulate and dorsolateral prefrontal cortices. Int J Neurosci. 2009;119(3):404-41. doi: 10.1080/00207450802480325. — View Citation
Comsa IM, Bekinschtein TA, Chennu S. Transient Topographical Dynamics of the Electroencephalogram Predict Brain Connectivity and Behavioural Responsiveness During Drowsiness. Brain Topogr. 2019 Mar;32(2):315-331. doi: 10.1007/s10548-018-0689-9. Epub 2018 Nov 29. — View Citation
Custo A, Van De Ville D, Wells WM, Tomescu MI, Brunet D, Michel CM. Electroencephalographic Resting-State Networks: Source Localization of Microstates. Brain Connect. 2017 Dec;7(10):671-682. doi: 10.1089/brain.2016.0476. Epub 2017 Nov 17. — View Citation
Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53. doi: 10.1073/pnas.0601417103. Epub 2006 Aug 31. — View Citation
Deiber MP, Ammann C, Hasler R, Colin J, Perroud N, Ros T. Electrophysiological correlates of improved executive function following EEG neurofeedback in adult attention deficit hyperactivity disorder. Clin Neurophysiol. 2021 Aug;132(8):1937-1946. doi: 10.1016/j.clinph.2021.05.017. Epub 2021 Jun 11. — View Citation
Deiber MP, Hasler R, Colin J, Dayer A, Aubry JM, Baggio S, Perroud N, Ros T. Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback. Neuroimage Clin. 2020;25:102145. doi: 10.1016/j.nicl.2019.102145. Epub 2019 Dec 24. — View Citation
Diaz Hernandez L, Rieger K, Baenninger A, Brandeis D, Koenig T. Towards Using Microstate-Neurofeedback for the Treatment of Psychotic Symptoms in Schizophrenia. A Feasibility Study in Healthy Participants. Brain Topogr. 2016 Mar;29(2):308-21. doi: 10.1007/s10548-015-0460-4. Epub 2015 Nov 19. — View Citation
Drechsler R, Brem S, Brandeis D, Grunblatt E, Berger G, Walitza S. ADHD: Current Concepts and Treatments in Children and Adolescents. Neuropediatrics. 2020 Oct;51(5):315-335. doi: 10.1055/s-0040-1701658. Epub 2020 Jun 19. — View Citation
Ferat V, Arns M, Deiber MP, Hasler R, Perroud N, Michel CM, Ros T. Electroencephalographic Microstates as Novel Functional Biomarkers for Adult Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022 Aug;7(8):814-823. doi: 10.1016/j.bpsc.2021.11.006. Epub 2021 Nov 22. — View Citation
Hammer BU, Colbert AP, Brown KA, Ilioi EC. Neurofeedback for insomnia: a pilot study of Z-score SMR and individualized protocols. Appl Psychophysiol Biofeedback. 2011 Dec;36(4):251-64. doi: 10.1007/s10484-011-9165-y. — View Citation
Heinrich H, Gevensleben H, Strehl U. Annotation: neurofeedback - train your brain to train behaviour. J Child Psychol Psychiatry. 2007 Jan;48(1):3-16. doi: 10.1111/j.1469-7610.2006.01665.x. — View Citation
Horrell T, El-Baz A, Baruth J, Tasman A, Sokhadze G, Stewart C, Sokhadze E. Neurofeedback Effects on Evoked and Induced EEG Gamma Band Reactivity to Drug-related Cues in Cocaine Addiction. J Neurother. 2010 Jul;14(3):195-216. doi: 10.1080/10874208.2010.501498. — View Citation
Katayama H, Gianotti LR, Isotani T, Faber PL, Sasada K, Kinoshita T, Lehmann D. Classes of multichannel EEG microstates in light and deep hypnotic conditions. Brain Topogr. 2007 Fall;20(1):7-14. doi: 10.1007/s10548-007-0024-3. Epub 2007 Jun 21. — View Citation
Kropotov JD, Grin-Yatsenko VA, Ponomarev VA, Chutko LS, Yakovenko EA, Nikishena IS. ERPs correlates of EEG relative beta training in ADHD children. Int J Psychophysiol. 2005 Jan;55(1):23-34. doi: 10.1016/j.ijpsycho.2004.05.011. — View Citation
Krylova M, Alizadeh S, Izyurov I, Teckentrup V, Chang C, van der Meer J, Erb M, Kroemer N, Koenig T, Walter M, Jamalabadi H. Evidence for modulation of EEG microstate sequence by vigilance level. Neuroimage. 2021 Jan 1;224:117393. doi: 10.1016/j.neuroimage.2020.117393. Epub 2020 Sep 21. — View Citation
Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13170-5. doi: 10.1073/pnas.0700668104. Epub 2007 Aug 1. — View Citation
Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage. 2018 Oct 15;180(Pt B):577-593. doi: 10.1016/j.neuroimage.2017.11.062. Epub 2017 Dec 2. — View Citation
Mottaz A, Solca M, Magnin C, Corbet T, Schnider A, Guggisberg AG. Neurofeedback training of alpha-band coherence enhances motor performance. Clin Neurophysiol. 2015 Sep;126(9):1754-60. doi: 10.1016/j.clinph.2014.11.023. Epub 2014 Dec 6. — View Citation
Walker JE, Kozlowski GP. Neurofeedback treatment of epilepsy. Child Adolesc Psychiatr Clin N Am. 2005 Jan;14(1):163-76, viii. doi: 10.1016/j.chc.2004.07.009. — View Citation
Walker JE. Using QEEG-guided neurofeedback for epilepsy versus standardized protocols: enhanced effectiveness? Appl Psychophysiol Biofeedback. 2010 Mar;35(1):29-30. doi: 10.1007/s10484-009-9123-0. — View Citation
Zioga I, Hassan R, Luft CDB. Success, but not failure feedback guides learning during neurofeedback: An ERP study. Neuroimage. 2019 Oct 15;200:26-37. doi: 10.1016/j.neuroimage.2019.06.002. Epub 2019 Jun 12. — View Citation
* Note: There are 28 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in microstate coverage during training | Difference in EEG microstate time coverage (%) between training and rest periods for each session (session 2, session 3) independently. | Change within session at week 1 (session 2) and week 2 (session 2) | |
Primary | Change in microstate coverage during rest | Difference in EEG microstate time coverage (%) between rest periods for each session (session 2, session 3) independently. | Change within session week 1 (session 2) and week 2 (session 2) | |
Secondary | Correlations between EEG microstate time coverage (%) and task performance: error rates (%) and reaction time. | Within session at week 1 (session 2) and week 2 (session 2) | ||
Secondary | Change in EEG Event Related potentiels before and after neurofeedback training. | For each condition (Go/NoGo) we will investigate differences in Global map dissimilarity (GMD), amplitude and microstate segmentation between pre and post neurofeedback training tasks. | Within session at week 1 (session 2) and week 2 (session 2) |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06052553 -
A Study of TopSpin360 Training Device
|
N/A | |
Completed |
NCT05511077 -
Biomarkers of Oat Product Intake: The BiOAT Marker Study
|
N/A | |
Recruiting |
NCT04632485 -
Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
|
||
Completed |
NCT05931237 -
Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults
|
N/A | |
Completed |
NCT04527718 -
Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers
|
Phase 1 | |
Terminated |
NCT04556032 -
Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women
|
N/A | |
Completed |
NCT04998695 -
Health Effects of Consuming Olive Pomace Oil
|
N/A | |
Completed |
NCT04065295 -
A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225
|
Phase 1 | |
Completed |
NCT04107441 -
AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects
|
Phase 1 | |
Completed |
NCT01442831 -
Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects
|
Phase 1 | |
Terminated |
NCT05934942 -
A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood
|
Phase 1 | |
Recruiting |
NCT05525845 -
Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI
|
N/A | |
Completed |
NCT05515328 -
A Study in Healthy Men to Test How BI 685509 is Processed in the Body
|
Phase 1 | |
Completed |
NCT05030857 -
Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects
|
Phase 1 | |
Completed |
NCT04967157 -
Cognitive Effects of Citicoline on Attention in Healthy Men and Women
|
N/A | |
Recruiting |
NCT04714294 -
Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers
|
Phase 1 | |
Recruiting |
NCT04494269 -
A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls
|
Phase 1 | |
Completed |
NCT04539756 -
Writing Activities and Emotions
|
N/A | |
Recruiting |
NCT04098510 -
Concentration of MitoQ in Human Skeletal Muscle
|
N/A | |
Completed |
NCT03308110 -
Bioavailability and Food Effect Study of Two Formulations of PF-06650833
|
Phase 1 |