Clinical Trials Logo

Clinical Trial Summary

EEG neurofeedback (NFB) may represent a new therapeutic opportunity for ADHD, a neuropsychiatric disorder characterized by attentional deficits and high impulsivity. Recent research of the Geneva group has demonstrated the ability of ADHD patients to control specific features of their EEG (notably alpha desynchronization) and that this control was associated with reduced impulsivity. In addition, alterations in EEG brain microstates (i.e., recurrent stable periods of short duration) have been described in adult ADHD patients, potentially representing a biomarker of the disorder. The present study aims to use neurofeedback to manipulate EEG microstates in ADHD patients and healthy controls, in order to observe the effects on neurophysiological, clinical and behavioural parameters.


Clinical Trial Description

Neurofeedback (NFB) is a broadly used method that enables individuals to self-regulate one or more neurophysiological parameters. In the case of electroencephalography (EEG) the parameters most often used so far are slow cortical potentials (SCPs), coherence training and frequency training. Protocols based on these measures have been applied to many clinical populations exhibiting abnormal EEG patterns including schizophrenia, insomnia, dyslexia, drug addiction, autistic spectrum disorder and attention deficit/hyperactivity disorder (ADHD). Today, the most widely used neurofeedback protocol for the ADHD population is based on the theta/beta ratio (TBR). However more recent studies have failed to replicate this finding of elevated TBR as a diagnostic feature in ADHD, which was also confirmed in a meta-analysis. These divergent results motivate the need for research to explore new markers to diagnose and treat ADHD. In a recent study, Férat and colleagues proposed EEG microstate analysis as a new framework to study ADHD. Microstate analysis models spontaneous EEG as a sequence of states defined by recurring appearance of a given distribution of scalp potentials. The authors observed a significantly increased contribution of one specific state commonly referred to microstate D in the ADHD population compared to healthy subjects. This state is often associated with attentional functions and brain regions in the dorsal attention networks are involved . It would therefore be interesting to study the causal link between this microstate and attention by manipulating this biomarker with neurofeedback. In this context, a recent study by Hernandez and colleagues has already demonstrated that healthy participants were able to control such brain microstates by neurofeedback. The aim of the present study is to test whether patients with ADHD are also capable of self-regulating their microstate dynamics. In the light of recent findings on EEG microstate and the ADHD population, the hypothesis is that microstate D could be a potential functional biomarker of ADHD. To test it, the proposal is to modulate this microstate using a neurofeedback training protocol directly targeting microstate parameters. According to the main hypothesis, changes in microstate parameters should be correlated with change in attentional and impulsive behaviour. To answer this question, a two-session study was designed, where participants will perform a continuous performance task (CPT) before and after 30 minutes of microstate-based neurofeedback training. During one of the sessions participants will be trained to upregulate microstate parameters, while during the other one, they will be trained to downregulate the same parameters. Intra- and across-section statistical contrasts, both in terms of brain activity changes and behavioural performance, should provide evidence to evaluate the impact of microstate changes relative to behaviour. In addition, and according to a large number of studies on ERP components in ADHD patients the recording of event related potentials (ERPs) during the behavioural task could help us understand the neurophysiological changes linked to attention and impulsivity measures. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05582928
Study type Interventional
Source University Hospital, Geneva
Contact Nader Perroud, Professor
Phone +41 22 305 45 11
Email nader.perroud@hcuge.ch
Status Recruiting
Phase N/A
Start date September 19, 2022
Completion date June 2025

See also
  Status Clinical Trial Phase
Recruiting NCT06052553 - A Study of TopSpin360 Training Device N/A
Completed NCT05511077 - Biomarkers of Oat Product Intake: The BiOAT Marker Study N/A
Recruiting NCT04632485 - Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
Completed NCT05931237 - Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults N/A
Completed NCT04527718 - Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers Phase 1
Terminated NCT04556032 - Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women N/A
Completed NCT04998695 - Health Effects of Consuming Olive Pomace Oil N/A
Completed NCT04065295 - A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225 Phase 1
Completed NCT04107441 - AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects Phase 1
Completed NCT01442831 - Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects Phase 1
Terminated NCT05934942 - A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood Phase 1
Recruiting NCT05525845 - Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI N/A
Completed NCT05515328 - A Study in Healthy Men to Test How BI 685509 is Processed in the Body Phase 1
Completed NCT05030857 - Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects Phase 1
Completed NCT04967157 - Cognitive Effects of Citicoline on Attention in Healthy Men and Women N/A
Recruiting NCT04494269 - A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls Phase 1
Recruiting NCT04714294 - Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers Phase 1
Completed NCT04539756 - Writing Activities and Emotions N/A
Recruiting NCT04098510 - Concentration of MitoQ in Human Skeletal Muscle N/A
Completed NCT03308110 - Bioavailability and Food Effect Study of Two Formulations of PF-06650833 Phase 1