Clinical Trials Logo

Clinical Trial Details — Status: Enrolling by invitation

Administrative data

NCT number NCT05396287
Other study ID # 2020-0423
Secondary ID 1RF1NS117746-01P
Status Enrolling by invitation
Phase
First received
Last updated
Start date July 19, 2022
Est. completion date June 2024

Study information

Verified date August 2023
Source University of Wisconsin, Madison
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Brain blood flow regulation will be measured in response to environmental changes using MRI.


Description:

Global brain blood flow decreases with advancing age; however, some adults have accelerated declines in brain blood flow, placing them at a greater risk of cognitive impairment. Similarly, brain reactivity to increased levels of carbon dioxide decreases with age, with a greater decline in adults with vascular risk factors and is impaired in early Alzheimer's disease. Preclinical models suggest that reduced brain blood flow, results in low levels of oxygen regionally. Currently, there are a lack of human studies that investigate the cause or consequence of altered blood flow regulation in the brain. The research aims are: 1. Determine the impact of vertebral artery hypoplasia (VAH) on brain reactivity to increased levels of carbon dioxide. 2. Determine the impact of VAH on the brain blood flow response to acute low levels of oxygen.


Recruitment information / eligibility

Status Enrolling by invitation
Enrollment 80
Est. completion date June 2024
Est. primary completion date June 2024
Accepts healthy volunteers
Gender All
Age group 55 Years to 69 Years
Eligibility Inclusion Criteria: - BMI =38.5 kg/m2 - Nonsmoker - Female subjects: postmenopausal - Currently enrolled in the Wisconsin Alzheimer's Disease Research Clinical Core Exclusion Criteria: - Diagnosis of mild cognitive impairment or Alzheimer's disease - Uncontrolled hypertension - History or evidence of hepatic disease, hematological disease, or peripheral vascular disease - Severe kidney injury requiring hemodialysis - Cardiovascular disease including: severe congestive heart failure, coronary artery disease, ischemic heart disease (stents, coronary artery bypass grafts) and tachycardia - History of clinically significant ischemic or hemorrhagic stroke, or significant cerebrovascular disease - History of HIV/AIDS - Severe untreated obstructive sleep apnea - History of diabetes with HbA1c greater than 9.5% - Major neurologic disorders other than dementia (e.g., multiple sclerosis, amyotrophic lateral sclerosis, brain surgery, etc.) - Current or recent (<1 year) major psychiatric condition (Axis I) or addictive disorders - Contraindications to MRI

Study Design


Related Conditions & MeSH terms


Intervention

Device:
MRI
Participants will undergo an MRI scan while participating in two breathing tests (hypercapnia and hypoxia) to measure brain blood flow.

Locations

Country Name City State
United States University of Wisconsin-Madison Madison Wisconsin

Sponsors (2)

Lead Sponsor Collaborator
University of Wisconsin, Madison National Institute of Neurological Disorders and Stroke (NINDS)

Country where clinical trial is conducted

United States, 

References & Publications (32)

Ahmed M, Giesbrecht GG, Serrette C, Georgopoulos D, Anthonisen NR. Ventilatory response to hypoxia in elderly humans. Respir Physiol. 1991 Mar;83(3):343-51. doi: 10.1016/0034-5687(91)90053-l. — View Citation

Alwatban M, Murman DL, Bashford G. Cerebrovascular Reactivity Impairment in Preclinical Alzheimer's Disease. J Neuroimaging. 2019 Jul;29(4):493-498. doi: 10.1111/jon.12606. Epub 2019 Feb 12. — View Citation

Bangen KJ, Nation DA, Clark LR, Harmell AL, Wierenga CE, Dev SI, Delano-Wood L, Zlatar ZZ, Salmon DP, Liu TT, Bondi MW. Interactive effects of vascular risk burden and advanced age on cerebral blood flow. Front Aging Neurosci. 2014 Jul 7;6:159. doi: 10.3389/fnagi.2014.00159. eCollection 2014. — View Citation

Barnes JN, Harvey RE, Eisenmann NA, Miller KB, Johnson MC, Kruse SM, Lahr BD, Joyner MJ, Miller VM. Cerebrovascular reactivity after cessation of menopausal hormone treatment. Climacteric. 2019 Apr;22(2):182-189. doi: 10.1080/13697137.2018.1538340. Epub 2019 Jan 21. — View Citation

Barnes JN, Harvey RE, Miller KB, Jayachandran M, Malterer KR, Lahr BD, Bailey KR, Joyner MJ, Miller VM. Cerebrovascular Reactivity and Vascular Activation in Postmenopausal Women With Histories of Preeclampsia. Hypertension. 2018 Jan;71(1):110-117. doi: 10.1161/HYPERTENSIONAHA.117.10248. Epub 2017 Nov 20. — View Citation

Barnes JN, Schmidt JE, Nicholson WT, Joyner MJ. Cyclooxygenase inhibition abolishes age-related differences in cerebral vasodilator responses to hypercapnia. J Appl Physiol (1985). 2012 Jun;112(11):1884-90. doi: 10.1152/japplphysiol.01270.2011. Epub 2012 Mar 22. — View Citation

Barton GP, Corrado PA, Francois CJ, Chesler NC, Eldridge MW, Wieben O, Goss KN. Exaggerated Cardiac Contractile Response to Hypoxia in Adults Born Preterm. J Clin Med. 2021 Mar 10;10(6):1166. doi: 10.3390/jcm10061166. — View Citation

Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989 May;28(2):193-213. doi: 10.1016/0165-1781(89)90047-4. — View Citation

Chen G, Ward BD, Xie C, Li W, Wu Z, Jones JL, Franczak M, Antuono P, Li SJ. Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging. Radiology. 2011 Apr;259(1):213-21. doi: 10.1148/radiol.10100734. Epub 2011 Jan 19. — View Citation

Hays CC, Zlatar ZZ, Wierenga CE. The Utility of Cerebral Blood Flow as a Biomarker of Preclinical Alzheimer's Disease. Cell Mol Neurobiol. 2016 Mar;36(2):167-79. doi: 10.1007/s10571-015-0261-z. Epub 2016 Feb 22. — View Citation

Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci. 2004 May;5(5):347-60. doi: 10.1038/nrn1387. No abstract available. — View Citation

Iqbal S. A comprehensive study of the anatomical variations of the circle of willis in adult human brains. J Clin Diagn Res. 2013 Nov;7(11):2423-7. doi: 10.7860/JCDR/2013/6580.3563. Epub 2013 Nov 10. — View Citation

Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci. 2017 Jul;18(7):419-434. doi: 10.1038/nrn.2017.48. Epub 2017 May 18. — View Citation

Kulyk C, Voltan C, Simonetto M, Palmieri A, Farina F, Vodret F, Viaro F, Baracchini C. Vertebral artery hypoplasia: an innocent lamb or a disguise? J Neurol. 2018 Oct;265(10):2346-2352. doi: 10.1007/s00415-018-9004-7. Epub 2018 Aug 16. — View Citation

Mardimae A, Balaban DY, Machina MA, Battisti-Charbonney A, Han JS, Katznelson R, Minkovich LL, Fedorko L, Murphy PM, Wasowicz M, Naughton F, Meineri M, Fisher JA, Duffin J. The interaction of carbon dioxide and hypoxia in the control of cerebral blood flow. Pflugers Arch. 2012 Oct;464(4):345-51. doi: 10.1007/s00424-012-1148-1. Epub 2012 Sep 9. Erratum In: Pflugers Arch. 2013 Feb;465(2):343. Battisti-Charbonney, Anne [added]. — View Citation

Marshall RS, Lazar RM. Pumps, aqueducts, and drought management: vascular physiology in vascular cognitive impairment. Stroke. 2011 Jan;42(1):221-6. doi: 10.1161/STROKEAHA.110.595645. Epub 2010 Dec 9. — View Citation

Mikhail Kellawan J, Harrell JW, Roldan-Alzate A, Wieben O, Schrage WG. Regional hypoxic cerebral vasodilation facilitated by diameter changes primarily in anterior versus posterior circulation. J Cereb Blood Flow Metab. 2017 Jun;37(6):2025-2034. doi: 10.1177/0271678X16659497. Epub 2016 Jan 1. — View Citation

Miller KB, Howery AJ, Harvey RE, Eldridge MW, Barnes JN. Cerebrovascular Reactivity and Central Arterial Stiffness in Habitually Exercising Healthy Adults. Front Physiol. 2018 Aug 17;9:1096. doi: 10.3389/fphys.2018.01096. eCollection 2018. — View Citation

Miller KB, Howery AJ, Rivera-Rivera LA, Johnson SC, Rowley HA, Wieben O, Barnes JN. Age-Related Reductions in Cerebrovascular Reactivity Using 4D Flow MRI. Front Aging Neurosci. 2019 Oct 17;11:281. doi: 10.3389/fnagi.2019.00281. eCollection 2019. — View Citation

Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010 Jul 29;67(2):181-98. doi: 10.1016/j.neuron.2010.07.002. Erratum In: Neuron. 2010 Oct 6;68(1):161. — View Citation

Park JH, Kim JM, Roh JK. Hypoplastic vertebral artery: frequency and associations with ischaemic stroke territory. J Neurol Neurosurg Psychiatry. 2007 Sep;78(9):954-8. doi: 10.1136/jnnp.2006.105767. Epub 2006 Nov 10. — View Citation

Peng SL, Chen X, Li Y, Rodrigue KM, Park DC, Lu H. Age-related changes in cerebrovascular reactivity and their relationship to cognition: A four-year longitudinal study. Neuroimage. 2018 Jul 1;174:257-262. doi: 10.1016/j.neuroimage.2018.03.033. Epub 2018 Mar 19. — View Citation

Peterson C, Phillips L, Linden A, Hsu W. Vertebral artery hypoplasia: prevalence and reliability of identifying and grading its severity on magnetic resonance imaging scans. J Manipulative Physiol Ther. 2010 Mar-Apr;33(3):207-11. doi: 10.1016/j.jmpt.2010.01.012. — View Citation

Poublanc J, Sobczyk O, Shafi R, Sayin ES, Schulman J, Duffin J, Uludag K, Wood JC, Vu C, Dharmakumar R, Fisher JA, Mikulis DJ. Perfusion MRI using endogenous deoxyhemoglobin as a contrast agent: Preliminary data. Magn Reson Med. 2021 Dec;86(6):3012-3021. doi: 10.1002/mrm.28974. Epub 2021 Oct 22. — View Citation

Scheel P, Puls I, Becker G, Schoning M. Volume reduction in cerebral blood flow in patients with vascular dementia. Lancet. 1999 Dec 18-25;354(9196):2137. doi: 10.1016/S0140-6736(99)04016-7. — View Citation

Slessarev M, Han J, Mardimae A, Prisman E, Preiss D, Volgyesi G, Ansel C, Duffin J, Fisher JA. Prospective targeting and control of end-tidal CO2 and O2 concentrations. J Physiol. 2007 Jun 15;581(Pt 3):1207-19. doi: 10.1113/jphysiol.2007.129395. Epub 2007 Apr 19. — View Citation

Switzer AR, Cheema I, McCreary CR, Zwiers A, Charlton A, Alvarez-Veronesi A, Sekhon R, Zerna C, Stafford RB, Frayne R, Goodyear BG, Smith EE. Cerebrovascular reactivity in cerebral amyloid angiopathy, Alzheimer disease, and mild cognitive impairment. Neurology. 2020 Sep 8;95(10):e1333-e1340. doi: 10.1212/WNL.0000000000010201. Epub 2020 Jul 8. — View Citation

Tchistiakova E, Crane DE, Mikulis DJ, Anderson ND, Greenwood CE, Black SE, MacIntosh BJ. Vascular risk factor burden correlates with cerebrovascular reactivity but not resting state coactivation in the default mode network. J Magn Reson Imaging. 2015 Nov;42(5):1369-76. doi: 10.1002/jmri.24917. Epub 2015 Apr 17. — View Citation

Thierfelder KM, Baumann AB, Sommer WH, Armbruster M, Opherk C, Janssen H, Reiser MF, Straube A, von Baumgarten L. Vertebral artery hypoplasia: frequency and effect on cerebellar blood flow characteristics. Stroke. 2014 May;45(5):1363-8. doi: 10.1161/STROKEAHA.113.004188. Epub 2014 Apr 3. — View Citation

Vovk A, Smith WD, Paterson ND, Cunningham DA, Paterson DH. Peripheral chemoreceptor control of ventilation following sustained hypoxia in young and older adult humans. Exp Physiol. 2004 Nov;89(6):647-56. doi: 10.1113/expphysiol.2004.027532. Epub 2004 Jul 15. — View Citation

Wierenga CE, Hays CC, Zlatar ZZ. Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer's disease. J Alzheimers Dis. 2014;42 Suppl 4(Suppl 4):S411-9. doi: 10.3233/JAD-141467. — View Citation

Wong SM, Jansen JFA, Zhang CE, Hoff EI, Staals J, van Oostenbrugge RJ, Backes WH. Blood-brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease. Neurology. 2019 Apr 9;92(15):e1669-e1677. doi: 10.1212/WNL.0000000000007263. Epub 2019 Mar 13. — View Citation

* Note: There are 32 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Cerebral Vascular Reactivity to Hypercapnia The change in brain blood flow using MRI will be measured in response to a hypercapnic breathing test. The participants cerebral vascular reactivity to hypercapnia will be compared between the controls (without VAH) and those with VAH. One study visit, up to 120 minutes in the MRI
Primary Cerebral Blood Flow Response to Hypoxia The change in brain blood flow using MRI will be measured in response to a hypoxic breathing test. The participants cerebral blood flow response to hypoxia will be compared between the controls (without VAH) and those with VAH. One study visit, up to 120 minutes in the MRI
See also
  Status Clinical Trial Phase
Recruiting NCT06052553 - A Study of TopSpin360 Training Device N/A
Completed NCT05511077 - Biomarkers of Oat Product Intake: The BiOAT Marker Study N/A
Recruiting NCT04632485 - Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
Completed NCT05931237 - Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults N/A
Completed NCT04527718 - Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers Phase 1
Terminated NCT04556032 - Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women N/A
Completed NCT04065295 - A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225 Phase 1
Completed NCT04107441 - AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects Phase 1
Completed NCT04998695 - Health Effects of Consuming Olive Pomace Oil N/A
Completed NCT01442831 - Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects Phase 1
Terminated NCT05934942 - A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood Phase 1
Recruiting NCT05525845 - Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI N/A
Completed NCT05515328 - A Study in Healthy Men to Test How BI 685509 is Processed in the Body Phase 1
Completed NCT04967157 - Cognitive Effects of Citicoline on Attention in Healthy Men and Women N/A
Completed NCT05030857 - Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects Phase 1
Recruiting NCT04494269 - A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls Phase 1
Recruiting NCT04714294 - Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers Phase 1
Completed NCT04539756 - Writing Activities and Emotions N/A
Recruiting NCT04098510 - Concentration of MitoQ in Human Skeletal Muscle N/A
Completed NCT03308110 - Bioavailability and Food Effect Study of Two Formulations of PF-06650833 Phase 1