Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT05091502
Other study ID # ForceLoss I
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date September 2, 2022
Est. completion date November 11, 2022

Study information

Verified date September 2022
Source Istituto Ortopedico Rizzoli
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The ForceLoss study aims to develop personalised modeling and simulation procedures to enable the differential diagnosis for the loss of muscle force, namely dynapenia. Dynapenia can be caused by diffuse or selective sarcopenia, lack of activation, or improper motor control. Each of these causes requires different interventions, but a reliable differential diagnosis is currently impossible. While instrumental methods can provide information on each of these possible causes, it is left to the experience of the single clinician to integrate such information into a complete diagnostic picture. But an accurate diagnosis for dynapenia is important in a number of pathologies, including neurological diseases, age-related frailty, diabetes, and orthopaedic conditions. The hypothesis is that the use of a mechanistic, subject-specific model of maximum isometric knee extension, informed by a number of instrumental information can provide a robust differential diagnosis of dynapenia. In this preliminary study, on healthy volunteers, the investigators will develop and optimize (i) the experimental protocol and (ii) the modeling and simulation framework, assessing both feasibility and reliability of the proposed procedures. Medical imaging, electromyography (EMG) and dynamometry data will be collected and combined to inform a personalised musculoskeletal model of each participant. Biomechanical computer simulations of a Maximal Voluntary Isometric Contraction (MVIC) task will then be performed. To validate the proposed approach, the models' estimates will be compared to in vivo dynamometry measurements and experimental EMG data.


Recruitment information / eligibility

Status Completed
Enrollment 20
Est. completion date November 11, 2022
Est. primary completion date November 10, 2022
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 20 Years to 40 Years
Eligibility Inclusion Criteria: - Body mass index (BMI) between 15 and 30 kg / m² Exclusion Criteria: - Neurological, rheumatic or tumoral diseases; - Pathologies or physical conditions incompatible with the use of magnetic resonance imaging and electrostimulation (i.e., active and passive implanted biomedical devices, epilepsy, severe venous insufficiency in the lower limbs, pregnancy); - Previous interventions or traumas to the joints of the lower limb.

Study Design


Related Conditions & MeSH terms


Intervention

Diagnostic Test:
Personalised musculoskeletal modeling
Magnetic resonance images, electromyography and dynamometry data will be used to develop personalised musculoskeletal models

Locations

Country Name City State
Italy IRCCS Istituto Ortopedico Rizzoli Bologna Emilia-Romagna

Sponsors (1)

Lead Sponsor Collaborator
Istituto Ortopedico Rizzoli

Country where clinical trial is conducted

Italy, 

References & Publications (2)

Nishikawa Y, Watanabe K, Takahashi T, Hosomi N, Orita N, Mikami Y, Maruyama H, Kimura H, Matsumoto M. Sex differences in variances of multi-channel surface electromyography distribution of the vastus lateralis muscle during isometric knee extension in young adults. Eur J Appl Physiol. 2017 Mar;117(3):583-589. doi: 10.1007/s00421-017-3559-3. Epub 2017 Feb 20. — View Citation

Pons C, Borotikar B, Garetier M, Burdin V, Ben Salem D, Lempereur M, Brochard S. Quantifying skeletal muscle volume and shape in humans using MRI: A systematic review of validity and reliability. PLoS One. 2018 Nov 29;13(11):e0207847. doi: 10.1371/journal.pone.0207847. eCollection 2018. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Muscle volume Full lower limb MRI data will be acquired with subjects in supine position. Individual muscle volumes (in cm3) will be segmented using commercial software and stored in anonymized form. Such data will serve as normative dataset/threshold in future studies that aim to assess (the severity of) sarcopenia in a patient population. at baseline (Day 0)
Primary Co-contraction index (CCI) Experimental EMG data will be recorded from the major lower limb muscles involved in the knee extension, while participants perform a maximal voluntary isometric contraction on a dynamometer (i.e., MVIC test to quantify muscle strength).
The co-contraction index, defined as the relative activation of agonist and antagonist muscles (for this task: quadriceps and hamstrings) in the act of kicking (MVIC test), will be computed according to Li et al (2020).
EMG patterns (mV) will additionally be stored and will constitute a normative dataset, for qualitative comparisons to identify suboptimal muscle control or altered muscle activation patterns in dynapenic patients in future studies that aim to assess (the severity of) dynapenia in a patient population.
at baseline (Day 0)
Primary MVIC Torque Dynamometry data will be acquired while participants perform a MVIC leg extension test. The maximum torque values (Nm) measured over three repetitions will be recorded. These correspond to the values observed in correspondence of the plateaux of force, developed over a sustained contraction.
Such data will serve as normative dataset/threshold in future studies that aim to assess (the severity of) dynapenia in a patient population.
at baseline (Day 0)
See also
  Status Clinical Trial Phase
Recruiting NCT06052553 - A Study of TopSpin360 Training Device N/A
Completed NCT05511077 - Biomarkers of Oat Product Intake: The BiOAT Marker Study N/A
Recruiting NCT04632485 - Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
Completed NCT05931237 - Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults N/A
Completed NCT04527718 - Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers Phase 1
Terminated NCT04556032 - Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women N/A
Completed NCT04065295 - A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225 Phase 1
Completed NCT04107441 - AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects Phase 1
Completed NCT04998695 - Health Effects of Consuming Olive Pomace Oil N/A
Completed NCT01442831 - Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects Phase 1
Terminated NCT05934942 - A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood Phase 1
Recruiting NCT05525845 - Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI N/A
Completed NCT05515328 - A Study in Healthy Men to Test How BI 685509 is Processed in the Body Phase 1
Completed NCT04967157 - Cognitive Effects of Citicoline on Attention in Healthy Men and Women N/A
Completed NCT05030857 - Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects Phase 1
Recruiting NCT04494269 - A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls Phase 1
Recruiting NCT04714294 - Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers Phase 1
Completed NCT04539756 - Writing Activities and Emotions N/A
Recruiting NCT04098510 - Concentration of MitoQ in Human Skeletal Muscle N/A
Completed NCT03308110 - Bioavailability and Food Effect Study of Two Formulations of PF-06650833 Phase 1