Clinical Trials Logo

Clinical Trial Summary

Participants are seeking to unleash the full therapeutic potential of a newly developed, customizable and potentially commericializable 10-channel Functional Electrical Stimulation (FES) to rehabilitate the gait of chronic stroke survivors. Patricipants will utilize the theory of muscle synergies from motor neurosciences, which are defined as neural modules of motor control that coordinate the spatiotemporal activation patterns of multiple muscles, to guide our personal selections of muscles for FES. Before applying FES stimulations to chronic stroke survivors, participants will have to define normal muscle synergies from age-matched healthy control participants (1 session for each participant). After comparing the difference in muscle synergies in both healthy subjects and chronic stroke survivors, participants are attempting to rehabilitate the gait of chronic stroke survivors by using the wearable. Each chronic stroke survivor will undergo 18-session FES training (~ 1 month). It is hypothesized that FES will promote motor recovery by supplying the missing normal muscle synergies to chronic stroke survivors at their supposed times of activations in each step cycle during interventional training. It is also expected that the walk synergies of the paretic side of chronic stroke survivors should be more similar to healthy muscle synergies at the two post-training time points than before training. The healthy normal muscle synergies will be defined by EMG recordings from the recruited healthy participants.


Clinical Trial Description

Stroke is one of the leading causes of long-term adult disability worldwide. The impaired ability to walk post-stroke severely limits mobility and quality of life. Many recently-developed assistive technologies for gait rehabilitation are at present only marginally better at best than traditional therapies in their efficacies. There is an urgent need of novel, clinically viable, and effective gait rehabilitative strategies that can provide even better functional outcome for stroke survivors with diverse presentations. Among the many new post-stroke interventions, functional electrical stimulation (FES) of muscles remains attractive. FES is a neural-rehabilitative technology that communicates control signals from an external device to the neuromuscular system. There is increasing recognition that rehabilitation paradigms should promote restitution of the patient's muscle coordination towards the normal pattern during training, and FES can achieve this goal when stimulations are applied to the set of muscles whose natural coordination is impaired. For this reason, FES is a very promising interventional strategy. Existing FES paradigms, however, have yielded ambiguous results in previous clinical trials, especially those for chronic survivors, likely because either stimulation were applied only to single or a few muscles, or the stimulation pattern did not mimic the natural muscle coordination pattern during gait. A multi-muscle FES, when applied to a larger functional set of muscles and driven by their natural coordination pattern, can guide muscle activations towards the normal pattern through neuroplasticity, thus restore impairment at the level of muscle-activation deficit. The aim of our project is to rehabilitate the gait of chronic stroke survivors by delivering stimulations to multiple muscles, in their natural coordination pattern, using our wearable. participants will utilize the theory of muscle synergy from motor neuroscience to guide our personalizable selections of muscles for FES. Muscle synergies are hypothesized neural modules of motor control that coordinate the spatiotemporal activation patterns of multiple muscles. Our customizable FES pattern for each stroke survivor will be constructed based on the normal muscle synergies - identified from age-matched healthy subjects - that are absent in the stroke survivor's muscle pattern during walking. Since muscle synergies represent the natural motor-control units used by the nervous system, reinforcement of their activations through FES should lead to a restoration of normal neuromuscular coordination, thus more natural post-training gait. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04155866
Study type Observational
Source Chinese University of Hong Kong
Contact Vincent Chi Kwan Cheung, PhD
Phone +852 3943 9389
Email vckc@cuhk.edu.hk
Status Recruiting
Phase
Start date July 1, 2021
Completion date June 23, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT06052553 - A Study of TopSpin360 Training Device N/A
Completed NCT05511077 - Biomarkers of Oat Product Intake: The BiOAT Marker Study N/A
Recruiting NCT04632485 - Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
Completed NCT05931237 - Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults N/A
Terminated NCT04556032 - Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women N/A
Completed NCT04527718 - Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers Phase 1
Completed NCT04065295 - A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225 Phase 1
Completed NCT04998695 - Health Effects of Consuming Olive Pomace Oil N/A
Completed NCT04107441 - AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects Phase 1
Completed NCT01442831 - Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects Phase 1
Terminated NCT05934942 - A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood Phase 1
Recruiting NCT05525845 - Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI N/A
Completed NCT05515328 - A Study in Healthy Men to Test How BI 685509 is Processed in the Body Phase 1
Completed NCT05030857 - Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects Phase 1
Completed NCT04967157 - Cognitive Effects of Citicoline on Attention in Healthy Men and Women N/A
Recruiting NCT04714294 - Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers Phase 1
Recruiting NCT04494269 - A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls Phase 1
Completed NCT04539756 - Writing Activities and Emotions N/A
Recruiting NCT04098510 - Concentration of MitoQ in Human Skeletal Muscle N/A
Completed NCT03308110 - Bioavailability and Food Effect Study of Two Formulations of PF-06650833 Phase 1