View clinical trials related to Glioma.
Filter by:This pilot study will assess feasibility and to obtain initial estimates of efficacy of Sleep Activity and Task Effectiveness (SAFTE) model, which can accurately estimate the impact of scheduling factors and sleep history on both safety and productivity. The SAFTE model will be used to asses cancer-related fatigue and study potential associations of change in sleep patterns to tumor recurrence in patients with high grade glioma. Data will be collected using the Readiband™ Sleep Tracker (https://www.fatiguescience.com/sleep-science-technology/). The Readiband device captures high-resolution sleep data, validated against the clinical gold standard of polysomnography with 92% accuracy. Sleep data is transmitted to the cloud automatically for SAFTE Fatigue Model analysis. We will correlate clinical progression data obtained from the patient's electronic medical record with SAFTE data.
This study evaluates the feasibility of hypofractionated radiotherapy (RT) in the palliative treatment of recurrent diffuse intrinsic pontine glioma (DIPG). Participants will receive 15 Gy in 3 fractions as opposed to the standard 20 Gy in 10 fractions.
In the proposed trial, patients will be administered ribociclib+everolimus prior to surgical resection of their tumor. Recurrent GBM patients will be randomized into one of the three time-interval cohorts for the first two dose levels. In the lead-in dose escalation study, the first six subjects (lead-in) will receive ribociclib 400 mg and everolimus 2.5 mg orally-administered in 5 daily doses with the last dose. If one or less patient experiences DLT among the 6 patients, this regimen with ribociclib 400 mg and everolimus 2.5mg will be considered safe and we will continue with the dose escalation phase of the study up to Level 3. Four dose escalation levels: Level 0: ribociclib 400mg and everolimus 2.5 Level 1: ribociclib 600mg and everolimus 2.5mg Level 2: ribociclib 600mg and everolimus 5mg Level 3: ribociclib 600mg and everolimus 10mg
Open label, non-randomized, mono-center Phase I/II study in subjects with IDH-wildtype WHO grade III / IV glioma at first relapse.
This phase II trial studies how well fluorodopa F 18-positron emission tomography/magnetic resonance imaging scan (18F-DOPA-PET/MRI) works in imaging elderly patients with newly diagnosed grade IV malignant glioma or glioblastoma during planning for a short course of proton beam radiation therapy. 18F-DOPA is a chemical tracer that highlights certain cells during imaging. PET scan, is a metabolic imaging technique which takes advantage of how tumor cells take up nutrients differently than normal tissue. MRI scans are used to guide radiation therapy for most brain tumors. Hypofractionated proton beam therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Using 18FDOPA-PET scans along with MRI scans may be able to provide the radiation doctor with information on tumor tissue versus normal, healthy tissue and may help the doctor more accurately plan the radiation treatment.
To investigate the influence of two physical activity and exercising (PAE) interventions, namely resistance training and endurance training in relation to quality of life, depression, fatigue, sleep, anxiety, stress and coping, body image, and social interactions (psychological dimensions); cardiorespiratory fitness, morning cortisol secretion, inflammatory markers, and objective sleep (physiological dimensions), along with cancer-related dimensions
This research study is evaluating a psychological intervention for caregivers of loved ones with malignant gliomas.
Hyperfractionated radiation therapy (RT) to 72.0 Gy with BCNU will be compared to conventional radiation therapy to 60.0 Gy with BCNU to determine if hyperfractionated RT can improve the median survival time of adults with supratentorial malignant gliomas.
The explosion of novel therapies targeting tumor mutations or immune molecules requests to define or better characterize the mutational profiles of tumors that are none or insufficiently explored so far. This is particularly the case for tumors arising in immune-suppressed individuals or environments which have been poorly, if any, analyzed so far with modern molecular methods. The goal of the translational research program, Ideation, is to define novel biomarkers such as the tumor mutational profiling and immunomutanome in such contexts and to compare the results obtained to those observed in immune competent individuals. In addition, this approach will allow to characterize novel key non-invasive diagnostic and prognostic biomarkers such as circulating tumoral DNA and cells. Altogether results will provide novel biomarkers to better adapt therapeutic strategies in these cancers, to monitor response to treatment as well as to define new molecular targets of potential therapeutic strategies.
Pediatric high-grade gliomas are highly aggressive and treatment options are limited. The purpose of this first-in-pediatrics study is to examine the safety, tolerability, and pharmacokinetics of GDC-0084 and to estimate its maximum tolerated dose (MTD) when administered to pediatric patients with diffuse intrinsic pontine glioma (DIPG) or other diffuse midline H3 K27M-mutant gliomas after they have received radiation therapy (RT). GDC-0084 is a brain-penetrant inhibitor of a growth-promoting cell signaling pathway that is dysregulated in the majority of diffuse midline glioma tumor cells. This study is also designed to enable a preliminary assessment of the antitumor activity of single-agent GDC-0084, in the hope of enabling rational combination therapy with systemic therapy and/or radiation therapy (RT) in this patient population, which is in desperate need of therapeutic advances. Primary Objectives 1. To estimate the maximum tolerated dose (MTD) and/or the recommended phase 2 dosage (RP2D) of GDC-0084 in pediatric patients with newly diagnosed diffuse midline glioma, including diffuse intrinsic pontine glioma (DIPG) 2. To define and describe the toxicities associated with administering GDC-0084 after radiation therapy (RT) in a pediatric population 3. To characterize the pharmacokinetics of GDC-0084 in a pediatric population Secondary Objectives 1. To estimate the rate and duration of radiographic response in patients with newly diagnosed DIPG or other diffuse midline glioma treated with RT followed by GDC-0084 2. To estimate the progression-free survival (PFS) and overall survival (OS) distributions for patients with newly diagnosed DIPG or other diffuse midline glioma treated with RT followed by GDC-0084