View clinical trials related to Glioma.
Filter by:The goal of this multi-center clinical trial is to evaluate the effectiveness of MRI-based computer-aided diagnosis software (V1) for glioma segmentation, gene prediction, and tumor grading. Machine learning methods such as high-precision tumor segmentation and classification and discrimination modeling can further optimize the non-invasive molecular diagnosis and prognosis prediction. The main question it aims to answer is whether the software can predict the molecular type and the prognosis quickly and correctly. The results will be compared with the real-world clinical data double-blindly. Finally, form a set of user-friendly automatic glioma diagnosis and treatment systems for clinics.
From the medical records of a series of patients operated on for incident grade II and III glioma, the primary objective is to evaluate the correlation between the molecular profile of tumours and preoperative imaging data (by FDG and FDOPA PET-scan and multimodal MRI).
This study is designed to treat patients who have been diagnosed with brain cancer, including glioblastoma (GBM) and diffuse intrinsic pontine glioma (DIPG). The treatment uses immunomodulatory vaccine generated by autologous dendritic cells (DCs) pulsed with genetically modified tumor cells or tumor-related antigens including neoantigens to inject into patients. Vaccine-induced T cell responses have been associated with improved survival. The study will evaluate the safety and potential benefit of the novel immunomodulatory DC vaccines.
Malignant gliomas are the most common and deadly primary brain tumors in adults. The clinical outcome of patients with glioblastoma depends on key molecular genetic alteration. Specifically, Isocitrate Dehydrogenase Gene Mutation, an independent favorable prognostic factor, serve as diagnostic and prognostic markers of glioma. Thus, accurate grading of a glioma is fundamental in order to determine the treatment strategy. Amide proton transfer (APT) imaging is a noninvasive molecular MRI technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Preliminary studies have shown that APT-weighted (APTw) signal intensity could serve as a new imaging biomarker, by revealing significantly higher signal intensities in the high-grade gliomas compared with the low-grade gliomas. The purpose of this study was to investigate the value of amide proton transfer imaging (APT) in the noninvasive evaluation of isocitrate dehydrogenase (IDH) gene status in glioma.
The aim of the present study is to assess whether a new method of quantifying therapy-associated hemodynamic alterations based on DCE MR imaging may help to distinguish pseudoprogression from true progression in patients with high grade glioma, who received CCRT.