View clinical trials related to Glioblastoma.
Filter by:GBM represent the most common primary brain malignancy and prognosis remains poor. The most common subtype is glioblastoma which has a 5-year survival rate of approximately 5%. Despite advances in MRI techniques, accurately determining total extent of tumor remains a challenge. The result is incomplete treatment resulting in reduced survival or overtreatment resulting in avoidable treatment related morbidity. A more accurate means of assessing tumor extent is needed to guide management to improve patient survival and quality of life.
The goal of this clinical trial is to evaluate the safety and efficacy of neoadjuvant radiochemotherapy in the surgical resection of glioblastoma (GBM). The main questions it aims to answer are: - What is the safety profile of neoadjuvant radiochemotherapy in terms of neurological deficit, radionecrosis, edema, headache, wound dehiscence, infection, and cerebrospinal fluid fistula? - What is the efficacy of neoadjuvant radiochemotherapy in terms of progression-free survival, overall survival, cognitive function, and quality of life? Participants will undergo the following tasks and treatments: - Stereotactic biopsy and diagnosis confirmation. - Conformal hypofractionated stereotactic radiotherapy with concurrent temozolomide. - Supramarginal resection guided by 5-ALA under intraoperative neurophysiological monitoring. - Maintenance temozolomide administration for 6 months. Researchers will compare the group receiving neoadjuvant radiochemotherapy to the control group following the standard Stupp protocol to assess safety and efficacy outcomes.
The standard of care for glioblastoma (GBM) treatment involves maximal resection followed by concomitant radiotherapy and temozolomide. Progression-free survival (PFS) with this treatment is only 6.9 months and relapse is inevitable. At relapse, there is no consensus regarding the optimal therapeutic strategy. The rationale behind the fact that limited chemotherapy agents are available in the treatment of malignant gliomas is related to the blood-brain barrier (BBB), which impedes drug entry to the brain. Intraarterial (IA) chemotherapy allows to circumvent this. Using IA delivery of carboplatin, can produce responses in 70% of patients for a median PFS of 5 months. Median survival from study entry was 11 months, whereas the overall survival (OS) 23 months. How can the OS and PFS be improved? By combining chemotherapeutic agents with different mechanisms of action. Study design: In this phase II trial, treatment will be offered at relapse. Surgery will be performed for cytoreduction if it is warranted, followed with a combination IA carboplatin + IA Cealyx (liposomal doxorubicin) or IA carboplatin + IA etoposide phosphate. Toxicity will be assessed according to the NCIC common toxicity criteria. Treatment will consist in either IA carboplatin (400 mg/m^2) + IA Cealyx (30 mg/m^2) or IA carboplatin (400 mg/m^2) + IA etoposide phosphate (400 mg/m^2) every 4-6 weeks (1 cycle). Up to twelve cycles will be offered. Outcome measurements: Tumor response will be evaluated using the RANO criteria by magnetic resonance imaging monthly. Primary outcome will PFS and tumor response. Secondary outcome will include median OS, toxicity, quality of life (QOL), neurocognition (NC). Putting together these data will allow to correlate clinical and radiological response to QOL and NC.
Tumors of the central nervous system affect 21 people per 100,000 every year, a figure that refers to countries with advanced economies, with an increase in incidence over time. Experimental evidence suggests that cancer stem cells (CSCs) may play a key role in the malignancy of these tumors. In fact, due to the hypoxic tumor microenvironment, these cells are able to create compensatory pathways that confer stem-like, angiogenic and pro-tumoral functions. Furthermore, it has been demonstrated that brain tumor stem cells are radio- and chemo-resistant and therefore not treatable with the therapeutic protocols currently in use. To date, in fact, there are no definitive treatments for the eradication of brain tumors. In this scenario, sphingolips, a class of lipid deputized to several physiological functions, are also involved in tumor onset, progression, drug resistance, and aggressiveness. In hypoxic tumor microenvironment, CSCs present a modified rheostat in the metabolism of sphingolipid, in favor of Sphingosine-1-phosphate (S1P). S1P is an intermediate of sphingolipid metabolism, formed from sphingosine through the action of sphingosine kinases (SK). Increasing evidence suggests that S1P acts as a tumor-promoting signal, predominantly in the extracellular environment, regulating important cellular properties correlated with tumor potential. The project aims to identify new molecular and metabolic targets involved in the survival and chemo-resistance of tumor stem cells in relation to the tumor microenvironment.
The goal of this observational study is to learn about the effectiveness of Optune® (Tumor Treating Fields) in newly diagnosed glioblastoma (GBM) in China. The main question it aims to answer are: - The efficacy of Optune® as an concomitant/adjuvant to radiation therapy (RT) and temozolomide (TMZ) alone in the treatment of newly diagnosed GBM patients. - The effectiveness of Optune® given concomitantly with RT and TMZ in newly diagnosed GBM patients, compared to RT and TMZ alone. Participants will: - Receive or not receive TTFields. - Concomitantly or adjuvantly receive TTFields.
Glioblastoma (GBM) is the primary intracranial malignant tumor with the highest morbidity and mortality, and the 5-year survival rate is less than 10%. The number of primary diagnostic patients and deaths of GBM in China ranks first in the world every year, which seriously threatens people's life and health. At present, the clinical treatment strategy of maximum surgical resection combined with concurrent chemo- and radio-therapy and TTF treatment is still not satisfactory, and the median survival time of GBM patients is only 14.4 months. Statins inhibit cholesterol production with few side effects and are widely used for cholesterol control in patients with hyperlipidemia. In recent years, statins have shown good anti-tumor effect. Our previous study found that statins can block the malignant progression of glioma mediated by EGFR pathway. Therefore, the investigators report a clinical study protocol designed to evaluate the clinical efficacy of a comprehensive treatment strategy of atorvastatin (ATO) combined with temozolomide (TMZ) in primary and recurrent glioblastomas with high EGFR expression. The investigators designed a multicenter, single-arm, double-blind, phase II clinical trial to evaluate the efficacy and safety of oral ATO combined with TMZ in EGFR-high expressing GBM. After informed consent was signed by the patient or authorized family members, the patients were treated with the current STUPP regimen and ATO (20mg, qn) orally. The patients were regularly followed up for 52 weeks after treatment. The primary endpoint was progression-free survival (PFS), which was defined as the time from the start of GBM surgery to tumor progression (recurrence) or death. The secondary end point was the rate of tumor control, which was defined as the proportion of patients with a complete response, a partial response, or a stable disease that had shrunk or remained stable for a given period of time. Safety will be assessed during the study by monitoring of regular MRI scans, laboratory tests (liver function, lipid profile, blood routine), electrocardiography, vital signs (blood pressure, pulse, temperature), and weight. The results of this clinical trial will provide key information on whether the oral combination of atorvastatin and temozolomide prolongs PFS in EGFR-high GBM patients with efficacy and safety.
Glioblastoma (GBM) and diffuse intrinsic bridge gliomas (DIPG) only the most aggressive forms of cancer, and their prognosis remains bleak. Currently, the standard of treatment is TMZ concomitant with radiotherapy, and, at the end of combined treatment, as adjuvant therapy. In vitro and in vivo experimental studies have suggested that anthracyclines are effective antineoplastics for the treatment of gliomas. In patients with solid tumors treated with anthracyclines, continuous infusion administration compared with bolus administration has been shown to provide a better safety profile especially with regard to cardiotoxicity. Based on this evidence, this study aims to evaluate the safety and antitumor activity of combined treatment with Dox, WBRT (whole body radiotherapy), and TMZ in pediatric and young adult patients affected by GMB
Previous evidence has indicated that resection for recurrent glioblastoma might benefit the prognosis of these patients in terms of overall survival. However, the demonstrated safety profile of this approach is contradictory in the literature and the specific benefits in distinct clinical and molecular patient subgroups remains ill-defined. The aim of this study, therefore, is to compare the effects of resection and best oncological treatment for recurrent glioblastoma as a whole and in clinically important subgroups. This study is an international, multicenter, prospective observational cohort study. Recurrent glioblastoma patients will undergo tumor resection or best oncological treatment at a 1:1 ratio as decided by the tumor board. Primary endpoints are: 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks after surgery and 2) overall survival. Secondary endpoints are: 1) progression-free survival (PFS), 2) NIHSS deterioration at 3 months and 6 months after surgery, 3) health-related quality of life (HRQoL) at 6 weeks, 3 months, and 6 months after surgery, and 4) frequency and severity of Serious Adverse Events (SAEs) in each arm. Estimated total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. The study has been approved by the Medical Ethics Committee (METC Zuid-West Holland/Erasmus Medical Center; MEC-2020-0812). The results will be published in peer-reviewed academic journals and disseminated to patient organisations and media.
Glioblastoma, the most prevalent malignant tumor in the central nervous system, is characterized by high invasiveness and a propensity to recur, contributing to a relatively elevated mortality rate. Patients diagnosed with high-grade glioblastomas typically experience a median survival period of less than 14 months. Presently, the standard treatment for glioblastoma involves surgical resection combined with postoperative radiotherapy and chemotherapy, with postoperative chemotherapy playing a pivotal role in enhancing patient prognosis. Temozolomide (TMZ), a cutting-edge oral alkylating agent known for its advantageous properties, including easy traversal of the blood-brain barrier, induces DNA alkylation in tumor cells, fostering apoptosis. Currently, it serves as a frontline medication for postoperative chemotherapy in glioblastoma. However, clinical resistance to TMZ chemotherapy significantly hampers its efficacy in later stages. We have recently discovered and validated that 5-aminoimidazole-4-carboxamide (AICA), derived from TMZ, can transform into 5-aminoimidazole-4-carboxamide ribonucleotide-5-phosphate (AICAR) in GBM cells. Hypoxanthine phosphoribosyltransferase 1 (HPRT1) has been identified as the catalyst for the AICA reaction, generating AICAR. AICAR acts as an endogenous activator of AMP-activated protein kinase (AMPK), fostering chemoresistance in glioblastoma through the activation of the AMPK signaling pathway. 6-mercaptopurine (6-MP) competes effectively to inhibit HPRT1 activity, thereby impeding TMZ-induced AMPK activation and significantly heightening glioblastoma cell sensitivity to TMZ. In this project, we propose an innovative strategy involving the combination of 6-MP with TMZ for the treatment of glioblastoma.
Resection of glioblastoma in or near functional brain tissue is challenging because of the proximity of important structures to the tumor site. To pursue maximal resection in a safe manner, mapping methods have been developed to test for motor and language function during the operation. Previous evidence suggests that these techniques are beneficial for maximum safe resection in newly diagnosed grade 2-4 astrocytoma, grade 2-3 oligodendroglioma, and recently, glioblastoma. However, their effects in recurrent glioblastoma are still poorly understood. The aim of this study, therefore, is to compare the effects of awake mapping and asleep mapping with no mapping in resections for recurrent glioblastoma. This study is an international, multicenter, prospective 3-arm cohort study of observational nature. Recurrent glioblastoma patients will be operated with mapping or no mapping techniques with a 1:1 ratio. Primary endpoints are: 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months, and 6 months after surgery and 2) residual tumor volume of the contrast-enhancing and non-contrast-enhancing part as assessed by a neuroradiologist on postoperative contrast MRI scans. Secondary endpoints are: 1) overall survival (OS), 2) progression-free survival (PFS), 4) health-related quality of life (HRQoL) at 6 weeks, 3 months, and 6 months after surgery, and 4) frequency and severity of Serious Adverse Events (SAEs) in each arm. Estimated total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year. The study will be carried out by the centers affiliated with the European and North American Consortium and Registry for Intraoperative Mapping (ENCRAM).