View clinical trials related to Glioblastoma.
Filter by:This phase I/II trial tests the safety, side effects and best dose of selinexor given in combination with the usual chemotherapy (temozolomide) and compares the effect of this combination therapy vs. the usual chemotherapy alone (temozolomide) in treating patients with glioblastoma that has come back (recurrent). Selinexor is in a class of medications called selective inhibitors of nuclear export (SINE). It works by blocking a protein called CRM1, which may keep cancer cells from growing and may kill them. Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill tumor cells and slow down or stop tumor growth. Giving selinexor in combination with usual chemotherapy (temozolomide) may shrink or stabilize the tumor better than the usual chemotherapy with temozolomide alone in patients with recurrent glioblastoma.
This study is intend to explore the efficacy and safety of combined treatment of camrelizumab and bevacizumab in adult patients with recurrent glioblastoma.
This single center, single arm, open-label, phase I study will assess the safety of a laparoscopically harvested omental free flap into the resection cavity of recurrent glioblastoma multiforme (GBM) patients. All participants included in the study will undergo standard surgical resection for diagnosed recurrent GBM. Following the resection, the surgical cavity will be lined with a laparoscopically harvested omental free flap. The participant's dura, bone and scalp will be closed as is customary. The participant will be followed for side effects within 72 hours, 7 days, 30 days, 90 days and 180 days. Risk assessment will include seizure, stroke, infection, tumor progression, and death.
PROPHETIC GBM - Predicting response patterns to treatment in Glioblastoma (GBM) oncology patients based on host response evaluation during anti-cancer treatments
This phase II trial studies the effect of immunotherapy drugs (ipilimumab and nivolumab) in treating patients with glioma that has come back (recurrent) and carries a high number of mutations (mutational burden). Cancer is caused by changes (mutations) to genes that control the way cells function. Tumors with high number of mutations may respond well to immunotherapy. Immunotherapy with monoclonal antibodies such as ipilimumab and nivolumab may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving ipilimumab and nivolumab may lower the chance of recurrent glioblastoma with high number of mutations from growing or spreading compared to usual care (surgery or chemotherapy).
This phase II trial studies the side effects of solriamfetol in improving sleep in patients with grade II-IV glioma. Solriamfetol is a wakefulness-promoting drug. Giving solriamfetol may improve sleep, memory, fatigue, mood, or quality of life in patients with brain tumors (gliomas).
The overall objective of this study is to assess the safety and efficacy of the LUM Imaging System in imaging primary and metastatic cancer in the brain. This includes selecting a dose to determine the initial efficacy of LUM015 for the molecular imaging of low-grade gliomas, glioblastomas and cancer masses that have metastasized to the brain.
Glioblastomas (GBM) demonstrate in vivo genetic and histologic heterogeneity that can be non-invasively identified using imaging phenotypes that identify regionally distinct areas of tumor with genetic alterations that drive tumor resistance pathways. The researchers propose a unique approach to assess initial GBM heterogeneity by performing histological and genomic analysis of biopsies targeted by advanced MRI before treatment.
This phase II trial studies the side effects and how well pembrolizumab works in combination with standard therapy in treating patients with glioblastoma. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in the chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy beams to kill tumor cells and shrink tumors. Giving pembrolizumab and standard therapy comprising of temozolomide and radiation therapy may kill tumor cells.
Gamma GBM is a single-arm phase II trial that prospectively measures the progression-free survival time after addition of an early gamma knife boost to areas of residual tumor to standard-of-care (surgery, chemo-radiotherapy, chemotherapy).