View clinical trials related to Glioblastoma.
Filter by:RATIONALE: Cotara® is an experimental new treatment that links a radioactive isotope (iodine 131) to a targeted monoclonal antibody. This monoclonal antibody is designed to bind tumor cells and deliver radiation directly to the center of the tumor mass while minimizing effects on normal tissues. Cotara® thus literally destroys the tumor "from the inside out." This may be an effective treatment for glioblastoma multiforme, a malignant type of brain cancer. PURPOSE: This trial is studying the safety and radiation distribution of Cotara® in patients with recurrent glioblastoma multiforme.
The goal of this clinical research study is to learn if the combination of 6-Thioguanine, Xeloda (capecitabine), and Celebrex (celecoxib) with Temodar (temozolomide) or Lomustine (CCNU) is effective in the treatment of recurrent or progressive anaplastic glioma or glioblastoma multiforme in patients who have failed previous treatments. The safety of these combination treatment will also be studied. Objectives: 1.1 To determine the efficacy, as measured by 12 month progression-free survival, of TEMOZOLOMIDE or CCNU with 6-THIOGUANINE followed by CAPECITABINE and CELECOXIB in the treatment of patients with recurrent and/or progressive anaplastic gliomas or glioblastoma multiforme. 1.2 To determine the long-term toxicity of TEMOZOLOMIDE or CCNU with 6-THIOGUANINE followed by CAPECITABINE and CELECOXIB in recurrent anaplastic glioma or glioblastoma multiforme patients treated in this manner. 1.3 To determine the clinical relevance of genetic subtyping tumors as a predictor of response to this chemotherapy and long term survival
This is a Phase I, open-label, multi-centre study designed to assess the safety and tolerability of Cediranib in combination with lomustine in patients with primary recurrent malignant brain tumour.
This is a phase II study of the combination of Avastin and metronomic temozolomide in recurrent malignant glioma patients. The primary objective will be to determine the efficacy of Avastin (bevacizumab) and metronomic temozolomide in malignant glioma patients. The secondary objective will be to determine the safety of Avastin, 10 mg/kg every other week, in combination with metronomic temozolomide in terms of progression-free survival.
This phase II trial is studying how well sunitinib works in treating patients with recurrent malignant gliomas. Sunitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
RATIONALE: Drugs used in chemotherapy, such as hydroxychloroquine and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving hydroxychloroquine together with temozolomide and radiation therapy may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of hydroxychloroquine when given together with radiation therapy and temozolomide and to see how well they work in treating patients with newly diagnosed glioblastoma multiforme.
RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving radiation therapy together with temozolomide may kill more tumor cells. It is not yet known whether radiation therapy and temozolomide are more effective than radiation therapy alone in treating glioblastoma multiforme. PURPOSE: This randomized phase III trial is studying radiation therapy and temozolomide to see how well they work compared with radiation therapy alone in treating patients with newly diagnosed glioblastoma multiforme.
The purpose of this study is to evaluate the anti-tumor activity and safety of Panzem NCD given in combination with daily oral fixed-dose temozolomide in patients with recurrent glioblastoma multiforme.
Irinotecan has demonstrated activity in malignant gliomas in multiple phase II studies. The activity is limited, with an approximately 15 % response rate and a progression-free survival of 3-5 months. Given the synergy between irinotecan and bevacizumab in colorectal cancer, and the high-level expression of vascular endothelial growth factor on malignant gliomas, one would expect synergy between bevacizumab and irinotecan against gliomas. In addition, 40-50 % of GBM have EGFR amplification/mutation making the EGFR an additional target. By combing cetuximab, with irinotecan and bevacizumab, one would expect further response, than irinotecan and bevacizumab alone. In addition, recurrent gliomas have an extremely poor prognosis, so innovative therapies are needed.
This phase II trial is studying the side effects and how well pazopanib works in treating patients with recurrent glioblastoma. Pazopanib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor