View clinical trials related to Glioblastoma Multiforme.
Filter by:This is a phase 1 study investigating the re-purposing of chlorpromazine, combined with temozolomide and radiation in the treatment of newly diagnosed glioblastoma multiforme.
This is an open-label, single-center Phase 0/1b study that will enroll at least 17 participants with recurrent WHO Grade 4 Glioma requiring re-radiation and approximately 20 participants with newly-diagnosed WHO Grade 4 glioma (nGBM). The trial will be composed of a Phase 0 component (subdivided into Arms A- C), and an expansion Phase 1b. Patients with tumors demonstrating a positive PK response in the Phase 0 component of the study will graduate to an expansion phase that combines therapeutic dosing of AZD1390 plus standard-of-care fractionated radiotherapy (RT).
Conduct a multicenter, open label Phase IIA trial of oral DCA in 40 surgical patients with recurrent GBM who have clinically indicated debulking surgery planned. No patients will be recruited at UF. Patients will be genotyped to establish safe dosing regimens and will be randomized to receive DCA (N=20) or no DCA (N=20) for one week prior to surgery. Deidentified blood and tumor tissue obtained at surgery will be assessed at UF for biochemical markers of DCA dynamics.
This is a Phase 1 open label, first in human study of C5252 monotherapy designed to determine the safety and tolerability of a single intratumoral (IT) injection of C5252 in patients with recurrent or progressive glioblastoma (GBM).
This Phase I (Cohort I and Cohort II) and Phase II trial is designed to confirm the safety and tolerability of Pembrolizumab when given in conjunction with M032, an Oncolytic Herpes Simplex Virus (oHSV) that expresses IL-12 and perform the Phase II portion using a Recommended Phase 2 Dose (RP2D) of M032 (provided by the Phase I) when given in conjunction with Pembrolizumab for recurrent malignant glioma (glioblastoma multiforme, anaplastic astrocytoma, or glio-sarcoma).
The purpose of the study is to evaluate the safety and survival of carmustine wafers and radiation and retifanlimab with or without temozolomide (TMZ) in newly-diagnosed adult subjects with glioblastoma multiform after carmustine wafer placement.
This is an open-label, multi-center Phase 0 study with an expansion phase that will enroll up to 24 participants with newly-diagnosed glioblastoma and up to 18 recurrent glioma participants with IDH mutation and ATRX loss. The trial will be composed of a Phase 0 component (subdivided into Arm A and B) and a therapeutic expansion phase. Patients with tumors demonstrating a positive PK Response (in Arm A) or a positive PD Response (in Arm B) of the Phase 0 component of the study will graduate to a therapeutic expansion phase that combines therapeutic dosing of niraparib plus standard-of-care fractionated radiotherapy (in Arm A) or niraparib monotherapy (in Arm B) until progression of disease.
This phase I trial investigates the efficacy and safety of brain-targeting epidermal growth factor receptor chimeric antigen receptor immune cells (EGFRvIII-CAR T cells) in treating patients with leptomeningeal disease from glioblastoma. T cells are part of the immune system and help the body fight malignant tumours. Immune cells can be genetically modified to destroy brain tumor cells in the laboratory. EGFRvIII -CAR T cells are brain tumor specific and can enter and express its genes in immune cells. Administering patients EGFRvIII -CAR T cells may help to recognize and destroy brain tumor cells in patients with leptomeningeal disease from glioblastoma.
This phase II trial studies the effect of P140K MGMT hematopoietic stem cells, O6-benzylguanine, temozolomide, and carmustine in treating participants with supratentorial glioblastoma or gliosarcoma who have recently had surgery to remove most or all of the brain tumor (resected). Chemotherapy drugs, such as 6-benzylguanine, temozolomide, and carmustine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing. Placing P140K MGMT, a gene that has been created in the laboratory into bone marrow making the bone more resistant to chemotherapy, allowing intra-patient dose escalation which kills more tumor cells while allowing bone marrow to survive.
This is a study of DSP-0390 in patients with recurrent high grade glioma.