Clinical Trials Logo

Gait Disorders, Neurologic clinical trials

View clinical trials related to Gait Disorders, Neurologic.

Filter by:
  • Enrolling by invitation  
  • Page 1

NCT ID: NCT06214494 Enrolling by invitation - Stroke, Ischemic Clinical Trials

Blood Flow Restricted High-Intensity Treadmill Training on Independently Ambulating Chronic Ischemic CVA Survivors

Start date: March 1, 2024
Phase: N/A
Study type: Interventional

Individuals surviving Chronic Ischemic Stroke have lingering walking deficits long after their infarct. The main goal of this study is to compare two high intensity treadmill walking programs to see which improves walking more. The main question we aim to answer is: How does blood flow restricted high-intensity treadmill training impact walking function? Participants will be randomly separated into two groups. One group will perform the high intensity treadmill training with blood flow restriction on their Stroke affected leg, while the second group performs high intensity treadmill training only. Every week participants will be asked to walk on the treadmill for a total of 75 minutes during 2x 1-hour sessions. On visit 1, participants will undergo strength, balance, and walking testing. They will then be treated 2x weekly for 4 weeks (visit 2-9) and be re-tested to track progress on visit 10. Participants will again be treated 2x weekly for 4 more weeks (visit 11-18) and be tested to see the end results on visit 19. Researchers will then compare both groups to see if blood flow restriction training changes walking function, strength, and balance.

NCT ID: NCT04968418 Enrolling by invitation - Clinical trials for Artificial Intelligence

Deep Neural Network for Stroke Patient Gait Analysis and Classification

Start date: July 20, 2021
Phase:
Study type: Observational

Lower limbs of stroke patients gradually recover through Brunnstrom stages, from initial flaccid status to gradually increased spasticity, and eventually decreased spasticitiy. Throughout this process. after stroke patients can start walking, their gait will show abnormal gait patterns from healthy subjects, including circumduction gait, drop foot, hip hiking and genu recurvatum. For these abnormal gait patterns, rehabilitation methods include ankle-knee orthosis(AFO) or increasing knee/pelvic joint mobility for assistance. Prior to this study, similar research has been done to differentiate stroke gait patterns from normal gait patterns, with an accuracy of over 96%. This study recruits subject who has encountered first ever cerebrovascular incident and can currently walk independently on flat surface without assistance, and investigators record gait information via inertial measurement units strapped to their bilateral ankle, wrist and pelvis to detect acceleration and angular velocity as well as other gait parameters. The IMU used in this study consists of a 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer, with a highest sampling rate of 128Hz. Afterwards, investigators use these gait information collected as training data and testing data for a deep neural network (DNN) model and compare clinical observation results by physicians simultaneously, in order to determine whether the DNN model is able to differentiate the types of abnormal gait patterns mentioned above. If this model is applied in the community, investigators hope it is available to early detect abnormal gait patterns and perform early intervention to decrease possibility of fallen injuries. This is a non-invasive observational study and doesn't involve medicine use. Participants are only required to perform walking for 6 minutes without assistance on a flat surface. This risk is extremely low and the only possible risk of this study is falling down during walking.

NCT ID: NCT04309305 Enrolling by invitation - Gait, Hemiplegic Clinical Trials

Robotic Exoskeleton Assisted Gait Post Stroke

RE-Assist
Start date: January 30, 2020
Phase: Phase 1
Study type: Interventional

The current investigation takes advantage of both a progressive and adaptive assist-as-needed massed practice and time-sensitive neuroplasticity through exoskeleton assisted walking in order to induce greater recovery-oriented CNS plasticity and consequent gains in more independent walking.