View clinical trials related to Focal Dystonia.
Filter by:This study will examine how the brain makes involuntary spasms and contractions in patients with focal hand dystonia (FHD). Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In FHD, only the hand is involved. The study will use functional magnetic resonance imaging (fMRI, see below) to study which areas of the brain are primarily affected in FHD and better understand how brain changes produce dystonia symptoms. Normal right-handed volunteers and patients with FHD who are 18-65 years of age may be eligible for this study. Candidates are screened with a medical history and physical and neurological examinations. Women who can become pregnant have a urine pregnancy test. All participants undergo fMRI. This test uses a strong magnetic field and radio waves to obtain images of body organs and tissues. The subject lies on a table that is moved into the scanner (a metal cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. The procedure lasts about 90 minutes, during which time the patient is asked to lie still for 10-15 minutes at a time. During the procedure, subjects are asked to perform some tasks, including writing, tapping with their hand, and drawing in a zigzag motion. Each task is performed using the right hand, left hand and right foot.
This study will examine how the brain coordinates movement in patients with focal hand dystonia. Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In focal dystonia, just one part of the body, such as the hand, neck or face, is involved. This study will use transcranial magnetic stimulation (TMS, see below) to study how the brain plans movement. Healthy volunteers and patients with focal hand dystonia 18 years of age and older may be eligible for this study. Healthy subjects may participate in one, two or three of the experiments described below. Patients with dystonia may participate in experiments one and three. Before each experiment, each subject is asked about his/her medical and neurologic history, complete questionnaires and will undergo a brief physical examination. Experiment 1 - Surface EMG: Small electrodes are taped to the skin over the arm to measure the electrical activity of muscles. - TMS: A wire coil is held on the subject's scalp. A brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the brain. During the stimulation, the subject may be asked to tense certain muscles slightly or perform other simple actions. The stimulation may cause a twitch in muscles of the face, arm, or leg, and the subject may hear a click and feel a pulling sensation on the skin under the coil. Experiment 2 (Two visits.) - Visit 1: Magnetic resonance imaging (MRI): This test uses a magnetic field and radio waves to obtain images of body tissues and organs. The patient lies on a table that is moved into the scanner (a metal cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. The procedure lasts about 90 minutes, during which time the patient will be asked to lie still for up to 30 minutes at a time. - Visit 2: Surface EMG and TMS Experiment 3 -Surface EMG and TMS - During the TMS, subjects are asked to respond to shapes on a computer screen by pushing a button or pressing a foot petal.
This study will examine how chemical changes in the brain produce symptoms of hand dystonia. Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In focal dystonia, just one part of the body, such as the hand, neck or face, is involved. The study will use positron emission tomography (PET) to find our which areas of the brain in patients with focal hand dystonia differ from healthy volunteers without focal hand dystonia. Healthy volunteers and patients with focal hand dystonia between 18 and 65 years of age may be eligible for this study. Candidates are screened with a medical history and physical and neurological examinations. Participants undergo the following procedures: - PET scanning: The PET scanner is shaped like a doughnut. The subject lies on a bed that can slide in and out of the scanner. A custom-molded plastic mask is placed on the face and head to support the head and prevent it from moving during scanning. Two radioactive substances - five doses (one per scan) of [15 O] water and one dose of [11C] flumazil are injected into the body through a vein. The dose of injected radioactive substance is very small, and they are not harmful to the body. The [15 O] water doses are injected during the first hour and scans are taken every 10 minutes. The [11C] flumazil is injected during the second hour. The radioactive substances are detected by the PET scanner and provide information on the functioning of the brain chemistry. - MRI scanning: MRI uses a magnetic field and radio waves to produce images of body tissues and organs. The patient lies on a table that is moved into the scanner (a narrow cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. Scanning time for this study will be less than one hour. Subjects may be asked to lie still for up to 10 minutes at a time.
This study uses a computerized method of musical instrument digital interface (MIDI) quantification of performance before and after treatment with botulinum toxin type B (Myobloc ®, Solstice Neurosciences). Myobloc is a purified and diluted form of botulinum toxin used medically to relax unwanted muscle spasms and movements. The aim of the study is to determine the feasibility of quantifying change in performance following treatment.
This study will use various methods to measure the activity of the motor cortex (the part of the brain that controls movements) in order to learn more about focal hand dystonia. Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In focal dystonia, just one part of the body, such as the hand, neck or face, is involved. Patients with focal hand dystonia and healthy normal volunteers between 18 and 65 years of age may be eligible for this study. Each candidate is screened with a medical history, physical examination and questionnaire. Participants undergo the following procedures: Finger Movement Tasks Subjects perform two finger movement tasks. In the first part of the study, they move their index finger repetitively from side to side at 10-second intervals for a total of 200 movements in four blocks of 50 at a time. In the second part of the study, subjects touch their thumb to the other four fingers in sequence from 1, 2, 3 and 4, while a metronome beats 2 times per second to help time the movements. This sequence is repeated for a total of 200 movements in four blocks of 50 at a time. Electroencephalography This test records brain waves. Electrodes (metal discs) are placed on the scalp with an electrode cap, a paste or a glue-like substance. The spaces between the electrodes and the scalp are filled with a gel that conducts electrical activity. Brain waves are recorded while the subject performs a finger movement task, as described above. Magnetoencephalography MEG records magnetic field changes produced by brain activity. During the test, the subjects are seated in the MEG recording room and a cone containing magnetic field detectors is lowered onto their head. The recording may be made while the subject performs a finger task. Electromyography Electromyography (EMG) measures the electrical activity of muscles. This study uses surface EMG, in which small metal disks filled with a conductive gel are taped to the skin on the finger. Magnetic resonance imaging MRI uses a magnetic field and radio waves to produce images of body tissues and organs. The patient lies on a table that can slide in and out of the scanner (a narrow metal cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning. Most scans last between 45 and 90 minutes. Subjects may be asked to lie still for up to 30 minutes at a time, and can communicate with the MRI staff at all times during the procedure. Questionnaire This questionnaire is designed to detect any sources of discomfort the subject may have experienced during the study.
This study will look for abnormalities in a brain of persons affected with spasmodic dysphonia, a form of movement disorder that involves involuntary "spasms" of the muscles in the vocal folds causing breaks of speech and affecting voice quality. The causes of this disorder are not known. The study will compare results of magnetic resonance imaging (MRI) in people with spasmodic dysphonia and in healthy volunteers. People with adductor or abductor spasmodic dysphonia and healthy volunteers may be eligible for this study. Candidates are screened with a medical history, physical examination, and a test called nasolaryngoscopy. For this test, the inside of the subject's nose is sprayed with a decongestant, and a small, flexible tube called a nasolaryngoscope is passed through the nose to the back of the throat to allow examination of the larynx (voice box). During this procedure, the subject is asked to perform tasks such as talking, singing, whistling, and saying prolonged vowels. The nasolaryngoscope is connected to a camera to record the movements of the vocal folds during these tasks. Eligible participants then undergo MRI of the brain. MRI uses a strong magnetic field and radio waves instead of x-rays to obtain images of body organs and tissues. For this test, the subject lies on a table that slides into the MRI scanner, a narrow metal cylinder, wearing ear plugs to muffle loud knocking sound that occurs during the scan. During MRI anatomical images of the brain are obtained. Subject may be asked to participate in up to two scanning sessions. Each session takes about 1-1/2 hours. Participants may also be asked to volunteer for a brain donation program which is optional. Information gained from donated tissue may lead to better treatments and potential cures for spasmodic dysphonia.
This study will collect information on (tricks) patients with focal dystonia use to relieve their symptoms. Dystonia is a movement disorder caused by sustained muscle contractions often causing twisting and abnormal posturing. Dystonia may be generalized, affecting at least one leg and the trunk of the body, segmental, affecting adjacent body parts, or focal, affecting a single body part, such as the hand or eyelid. It may be task-specific, such as writer's, musician's or sportsman's cramps. Some patients with focal dystonia use (tricks), such as touching the face or hand, to stop or alleviate the abnormal movement. This study will survey the types of tricks people with focal dystonia use in order to learn more about the disorder. Patients 18 years of age and older with focal dystonia may be eligible for this study. Candidates will be screened for eligibility with a medical history, clinical evaluation, and review of their medical records. In one 30- to 45-minute clinic visit, participants will be interviewed about their dystonia symptoms and the tricks they use to relieve the symptoms. They may be asked to show the investigators how the tricks work
This study will examine how the brain operates during execution and control of voluntary movement and what goes wrong with these processes in disease. It will use electroencephalography (EEG) and electromyography (EMG) to compare brain function in normal subjects and in patients with focal hand dystonia. In dystonia, involuntary muscle movements, or spasms, cause uncontrolled twisting and repetitive movement or abnormal postures. Focal dystonia involves just one region of the body, such as the hand, neck or face. EEG measures the electrical activity of the brain. The activity is recorded using wire electrodes attached to the scalp or mounted on a Lycra cap placed on the head. EMG measures electrical activity from muscles. It uses wire electrodes placed on the skin over the muscles. Adult healthy normal volunteers and patients with focal hand dystonia may be eligible for this study. Patients will be selected from NINDS's dystonia patient database. Participants will sit in a semi-reclining chair in a darkened room and be asked to move either their right index finger, right foot, or the angle of their mouth on the right side at a rate of one movement every 10 seconds. Brain and muscle activity will be measured during this task with EEG and EMG recordings.
This study will evaluate the effect of motor training on focal hand dystonia in people with writer's cramp and will examine whether this training affects excitability of the motor cortex of the brain. In dystonia, muscle spasms cause uncontrolled twisting and repetitive movement or abnormal postures. Focal dystonia involves just one part of the body, such as the hand, neck or face. Patients with focal hand dystonia have difficulty with individualized finger movements, which may be due to increased excitability of the motor cortex. Patients with hand dystonia 21 years of age or older may be eligible for this 2-month study. Those taking botulinum toxin injections must stop medication 3 months before entering the study. Participants will undergo a complete neurologic examination. They will undergo motor training with "constraint-induced movement therapy." This therapy involves constraining some fingers while allowing others to move. Participants will have the following tests and procedures at baseline (before motor training), after 4 weeks of motor training, and again after 8 weeks: - Handwriting analysis - A computerized program evaluates the degree of "automatic movements" the patient uses in writing, as well as writing pressure and speed. - Symptoms evaluation - Patients fill out a written questionnaire about symptoms and rate their improvement, if any, after training. - Transcranial magnetic stimulation - The patient is seated in a comfortable chair, and an insulated wire coil is placed on the scalp. Brief electrical currents pass through the coil, creating magnetic pulses that travel to the brain. These pulses generate very small electrical currents in the brain cortex, briefly disrupting the function of the brain cells in the stimulated area. The stimulation may cause muscle twitching or tingling in the scalp, face, arm or hand. During the stimulation, the patient is asked to slightly tense certain muscles in the hand or arm or perform simple actions. Electrodes are taped to the skin over the muscles activated by the stimulation, and the electrical activity in the muscles will be recorded with a computer. - Electroencephalogram (EEG) - Wire electrodes are taped to the scalp or placed on a Lycra cap the patient wears to record the brain's electrical activity. Participants will have 50-minute motor training sessions 3 times during the first week of the study, twice the second week and once each in weeks 3 and 4. In addition, they will be required to practice the training at home for 25 minutes each day during week 1 and 50 minutes each day for the remaining 3 weeks. Fingers not being trained will be splinted.
Objective: To determine if the calcium channel blockers, amlodipine can augment the effect of botulinum toxin injections in the treatment of focal dystonia. Study Population: 20 patients with cervical dystonia Design: Double-bind, placebo-controlled clinical trail. Outcome measures: For patients: dystonia rating scales (Twistrs, Fahn-Marsden dystonia scale, NINDS subjective patient rating scale), and hand grip strength. For healthy volunteers: Amplitude of EDB MEP.