Clinical Trials Logo

Focal Dystonia clinical trials

View clinical trials related to Focal Dystonia.

Filter by:
  • Completed  
  • Page 1 ·  Next »

NCT ID: NCT04692285 Completed - Focal Dystonia Clinical Trials

Electrophysiological and Neuroimaging Correlates of the Effect of Zolpidem in Patients With Focal Dystonia

Start date: September 30, 2017
Phase: Phase 1
Study type: Interventional

To study electrophysiological and imaging correlations of the clinical effectiveness of zolpidem in task-specific dystonia and to elucidate mechanisms underlying its therapeutic effects, patients with focal dystonia will be clinically evaluated and will undergo transcranial magnetic stimulation and FDG-PET CT brain imaging after a single 5 mg dose of zolpidem and placebo, in two separate sessions. Resting motor threshold (RMT), active motor threshold (AMT), resting and active input/output (IO) curve, short-interval intracortical inhibition (SICI) curve, long interval intracortical inhibition (LICI), intracortical facilitation (ICF), and cortical silent period (CSP) will be measured. Objective clinical improvement will be rated using Burke-Fahn-Marsden Dystonia Rating Scale-movement (BFM-M) and writer's cramp rating scale (WCRS). Subjective improvement will be measured using the visual analog scale (VAS). Only a subset of patients (10 patients) will undergo positron emission tomography with 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG PET) brain imaging after a single 5 mg dose of zolpidem and placebo.

NCT ID: NCT03797638 Completed - Focal Dystonia Clinical Trials

Characterization of Manual Dexterity by Finger Force Manipuladum (FFM) in Patients With Writer's Cramp and in Control Subjects

FFM_CT
Start date: October 1, 2018
Phase: N/A
Study type: Interventional

Writer's cramp is a focal dystonia characterized by abnormal movements and postures during writing. Limited finger independence during writing manifests as difficulty suppressing unwanted activations of neighbouring non task-relevant fingers. Patients with Writer's cramp also have difficulty in fine control of grip force. The investigators have recently developed the Finger Force Manipulandum which quantifies the forces applied by each fingers in different tasks. This method is sensitive for detection and quantification of small unwanted contractions in non-active ('stationary') fingers. Different tasks have been developed to assess abilities such as finger individuation but also fine finger force control, finger movement regularity and speed. The aim of this study is to assess if developed tasks allow to precisely characterize writer's cramp condition in terms of abilities aforementioned. To do so, performance of 20 writer's cramp patients in the developed task will be compared with performance of 20 control participants (matched in age, sex and writing hand) in the same tasks.

NCT ID: NCT03471923 Completed - Clinical trials for Nervous System Diseases

Non-Motor Features of Cervical Dystonia (CD)

Start date: March 26, 2018
Phase:
Study type: Observational

This study will examine the prevalence of four previously identified non-motor markers in a population of cervical dystonia patients, unaffected family members, and healthy volunteers in an attempt to identify a distinct combination of non-motor symptoms that may be indicative of disease development.

NCT ID: NCT03041714 Completed - Essential Tremor Clinical Trials

Neurophysiologic Study of Patient With Essential Tremor and Dystonic Tremor

Start date: April 7, 2017
Phase:
Study type: Observational

Background: Essential tremor is when a person has tremor, but no other neurological symptoms. Dystonic tremor is when a person also has dystonia. Dystonia is a condition in which muscle contraction causes changes in posture. Researchers do not fully know what areas of the brain cause these tremors, or how the types differ. They also do not know what tests can identify the differences. Objective: To look at differences between essential tremor and dystonic tremor. Eligibility: People ages 18 and older with or without tremor Design: Participants will be screened with medical history, physical exam, and urine tests. Those with tremor will complete questionnaires about how tremor affects them. The screening and study visits can be done on the same day or on separate days. Participants will have 1 or 2 study visits. These include magnetic resonance imaging (MRI) and tremor testing. For MRI, participants will lie on a table that slides in and out of a cylinder that takes pictures. Sensors on the skin measure breathing, heart rate, and muscle activity. This takes about 2 hours. Tremor testing will include transcranial magnetic stimulation (TMS), electrical stimulation of the fingers, doing a movement task, and recording of tremor movements. For TMS, two wire coils will be held on the scalp and a brief magnetic field will be produced. A brief electrical current will pass through the coils. For the other tests, small sticky pad electrodes will be put on the skin. Participants will move their hand when they hear a sound. They will get weak electrical shocks to their fingers. These tests will take 3-4 hours. Participants can take part in either or both parts of the study.

NCT ID: NCT02689466 Completed - Dystonia Clinical Trials

Cholinergic Receptor Imaging in Dystonia

Start date: December 16, 2016
Phase:
Study type: Observational

Background: Dystonia is a movement disorder in which a person s muscles contract on their own. This causes different parts of the body to twist or turn. The cause of this movement is unknown. Researchers think it may have to do with a chemical called acetylcholine. They want to learn more about why acetylcholine in the brain doesn t work properly in people with dystonia. Objective: To better understand how certain parts of the brain take up acetylcholine in people with dystonia. Eligibility: Adults at least 18 years old who have DYT1 dystonia or cervical dystonia. Healthy adult volunteers. Design: Participants will be screened with a medical history, physical exam, and pregnancy test. Study visit 1: Participants will have a magnetic resonance imaging (MRI) scan of the brain. The MRI scanner is a metal cylinder in a strong magnetic field that takes pictures of the brain. Participants will lie on a table that slides in and out of the cylinder. Study visit 2: Participants will have a positron emission tomography (PET) scan. The PET scanner is shaped like a doughnut. Participants will lie on a bed that slides in and out of the scanner. A small amount of a radioactive chemical that can be detected by the PET scanner will be given through an IV line to measure how the brain takes up acetylcholine. ...

NCT ID: NCT02334683 Completed - Spasticity Clinical Trials

Compare Two Guidance Techniques for Botulinum Toxin Injections for the Treatment of Limb Spasticity and Focal Dystonia

Start date: October 28, 2015
Phase: N/A
Study type: Interventional

This study seeks to compare the use of ultrasound and electrophysiologic techniques to target muscles for the treatment of spasticity and focal dystonia of the limbs. The purpose of this study is to investigate the use of two ways of locating the muscle for botulinum toxin (BoNT) injection for the treatment of focal hand dystonia and upper limb spasticity. Electrophysiologic guidance, using electrical stimulation, and ultrasound are the standard ways of locating muscles during a treatment of BoNT injection.

NCT ID: NCT02326818 Completed - Dystonia Clinical Trials

Comparison of Electrophysiologic and Ultrasound Guidance for Onabotulinum Toxin A Injections in Focal Upper Extremity Dystonia and Spasticity

Start date: January 20, 2016
Phase: Phase 3
Study type: Interventional

Background: - It is hard for people with arm spasticity and focal hand dystonia to control their arm and hand muscles. They are often treated with botulinum toxin (BoNT) injections. Electromyography with electrical stimulation (e-stim) and ultrasound are used to find muscles for BoNT injection. Researchers want to learn which method is faster and more comfortable. Objective: - To compare 2 ways of finding muscles for BoNT injection for the treatment of focal hand dystonia and upper limb spasticity. Eligibility: - Adults 18 and older with focal hand dystonia or arm spasticity who have been getting onabotulinumtoxin-A injections in protocol 85-N-0195. Design: - Participants will be screened with medical history and physical exam. - Participants will push or pull on a device that measures arm strength. They will have a neurologic exam. Women will have a pregnancy test. - Participants will have a BoNT injection using either e-stim or ultrasound. - For e-stim, sticky pads will be placed on the arm. A needle will be placed in the muscle. A small electric shock will be given through the needle. Then the injection will be given. - For ultrasound, a probe will be moved across the skin. A screen will show an image of the muscles. Then the injection will be given. - Participants will have a second injection 3 months later. They will have the method that was not used for their first injection. - After each session, participants will rate their experience. - Participants will have follow-up visits 1 month after each injection. They will be examined and asked about their response to treatment. Arm strength will be measured.

NCT ID: NCT01738581 Completed - Focal Dystonia Clinical Trials

rTMS and Retraining in Focal Hand Dystonia

DSS
Start date: November 2011
Phase: Phase 1/Phase 2
Study type: Interventional

This study is exploring a new experimental procedure in dystonia called repetitive transcranial magnetic brain stimulation (TMS) combined with rehabilitation. The purpose of the study is to determine whether repetitive TMS is effective as a treatment to reduce symptoms in dystonia as demonstrated by improved motor performance.

NCT ID: NCT00942851 Completed - Focal Dystonia Clinical Trials

A Study of Acetyl Hexapeptide-8 (AH8) in Treatment of Blepharospasm

Start date: July 2009
Phase: Phase 1/Phase 2
Study type: Interventional

Background: - Blepharospasm is caused by excessive contraction of the muscles that close the eye. It can be treated with injections of botulinum neurotoxin (BoNT), which works by weakening those muscles. - Acetyl Hexapeptide-8 (AH-8) is the active ingredient in a number of cosmetic creams used to treat wrinkles, and is marketed under the trade name Argireline(Copyright). Like BoNT, AH-8 works to weaken the muscles, but is available as a skin cream instead of an injection. AH-8 has never been used to treat people with blepharospasm. Objectives: - To determine if AH-8 can be used as part of a treatment regimen for blepharospasm. Eligibility: - Individuals 18 years of age and older who have blepharospasm and have been receiving successful treatment with botulinum toxin injections. Design: - Participants will be involved in the study for a maximum of 7 months. - Patients will have a complete physical and neurological exam, and will be asked questions about their blepharospasm. Patients will then receive BoNT injections in the same areas of the muscle around the eye and at the same doses that have been effective previously. - After the injections, patients will receive a container of either the active cream (with AH-8) or cream without AH-8, and will be instructed on how to apply it. - Patients will return 1 month after the first visit for another neurologic exam and questions, and will be asked about any side effects. Another supply of cream will be given. - Five additional visits will take place on a monthly basis, and patients will be given additional supplies of the cream as needed. Patients will stop participating in the study if they require another BoNT injection for blepharospasm. The study will end after 7 months.

NCT ID: NCT00713414 Completed - Focal Dystonia Clinical Trials

Role of Neurotransmission and Functional CNS Networks in Spasmodic Dysphonia

Start date: July 9, 2008
Phase:
Study type: Observational

This study will examine how the brain controls speech in patients with spasmodic dysphonia, a voice disorder that involves involuntary spasms of muscles in the larynx (voice box), causing breaks in speech. Although the causes of spasmodic dysphonia are unknown, recent studies found changes in brain function in patients with the disorder that may play a role in its development. People between 21 and 80 years of age with adductor spasmodic dysphonia may be eligible for this study. Candidates are screened with the following procedures: Medical history and physical examination. Nasolaryngoscopy to examine the larynx. For this test, the inside of the subject s nose is sprayed with a decongestant and a small, flexible tube called a nasolaryngoscope is passed through the nose to the back of the throat to allow examination of the larynx. The subject may be asked to talk, sing, whistle and say prolonged vowels during the procedure. The nasolaryngoscope is connected to a camera that records the movement of the vocal cords during these tasks. Voice and speech recording to measure the type and severity of voice disorder. Subjects are asked questions about their voice disorder and their voice is recorded while they repeat sentences and sounds. Participants undergo positron emission tomography (PET) and magnetic resonance imaging (MRI) of the brain, as follows: PET: A catheter is placed in a vein in the subject s arm to inject a radioactive substance called a tracer that is detected by the PET scanner and provides information on brain function. [11C]flumazenil is used in one scanning session and [11C]raclopride is used in another. For the scan, the subject lies on a bed that slides in and out of the doughnut-shaped scanner, wearing a custom-molded mask to support the head and prevent it from moving during the scan. For the first scan the subject lies quietly for 60 minutes. For the second scan, the subject lies quietly for 50 minutes and is then asked to say sentences during another 50 minutes. The amount of radiation received in this study equals to a uniform whole-body exposure of 0.9 rem, which is within the dose guideline established by the NIH Radiation Safety Committee for research subjects. The guideline is an effective dose of 5 rem received per year. MRI: This procedure uses a strong magnetic field and radio waves instead of X-rays to obtain images of the brain. The subject lies on a table that slides into the scanner, a narrow metal cylinder, wearing ear plugs to muffle loud knocking sounds that occur during the scan. Images of the brain structure are obtained while the subject lies still in the machine for 10 minutes. This is followed by functional MRI (fMRI) for 60 minutes, in which pictures are taken while the subject speaks, showing changes in brain regions that are involved in speech production.