View clinical trials related to Epilepsy.
Filter by:The study aims to evaluate the effectiveness of long-term video EEG monitoring using 10-20 electrodes extended with intra-auricular electrodes in locating the seizure onset zone and interictal epileptiform discharges (IEDs) in patients with temporal lobe epilepsy (TLE) and nontemporal lobe epilepsy (non-TLE).
The goal of this study is to evaluate the effectiveness of objective neural response feedback on deep brain stimulation (DBS) programming for drug-resistant epilepsy in a prospective observational cohort study.
This multisite prospective clinical study is to investigate the relationship between seizure type and frequency with the BioEP result during ASM titration in newly diagnosed patients with epilepsy, and to assess the utility of BioEP as an early prognostic indicator of ASM efficacy
The CENOBITE study will be conducted as a multi-center trial involving X leading centers from the Critical Care EEG Monitoring Consortium (CCEMRC). A total of 10 patients will be recruited over a period of one year, with each patient undergoing monitored treatment regimen. Each site will obtain its own approval from their institutional review board. Data will be shared through the MGB REDCap; raw EEG files will be shared through the MGB Dropbox and analyzed at the BWH. Monitoring for the development of Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) syndrome, a potential adverse reaction, will be a key aspect of the study. Regular assessments, including RegiSCAR scoring (a validated scoring system for DREeSS5), daily serum cenobamate level measurements, and comprehensive lab tests, will be conducted to ensure patient safety and the effective management of any adverse reactions such as DRESS syndrome.
For this study, the proposed intervention will be noninvasively delivered near infra-red (NIR) light - transcranial Photobiomodulation (tPBM) - to the brains of autistic children. This will occur, twice a week, for 10 weeks. The NIR light is delivered to specific brain areas by Cognilum, a wearable device developed by Jelikalite. The expected outcome is improved focus, improved eye contact, improved speech, improved behavior, and gains in functional skills. Cognilum may impact the clinical practice of treating autism. At the beginning, at five weeks, and at the end of study, the clinician will complete the CARS-2, SRS, CGI, and a caregiver interview; additionally, questionnaires will be administered to caregivers during one of the 1-hour weekly treatment sessions.
This is an open label, single arm, interventional, prospective first in human study, designed to evaluate the safety of the NAO.VNS SYSTEM.
The goal of this clinical trial is to to obtain a significant decrease in seizure frequency in patients with refractory focal epilepsy after applying treatment of cathodal tDCS, compared to sham stimulation drug-resistant epileptic patient. The main questions it aims to answer are: - Changes in quality of life - Percent of newly reported side effects after the stimulation period - Scores in epilepsy severity. Participants will be randomized in a cross-over, and will receive 10 days of tDCS or Sham. Each day will allow 2 periods of 20 minutes stimulation separated by 20 minutes off (with 40 minutes of cathodal stimulation total).
The purpose of the study is to investigate the long-term safety and tolerability of brivaracetam in study participants with childhood absence epilepsy or juvenile absence epilepsy.
This study is a non-randomized, open label, phase 1 clinical trial to evaluate the fesibility and safety of intrathalamic delivery of MSCs during standard of care DBS surgery for epilepsy. Subjects will be screened at our outpatient clinic and interested qualified subjects will be consented and offered participation in this trial. Once consent has been obtained, patients will undergo a standard preoperative evaluation which includes baseline laboratory values and a high-definition MRI. Patients will then undergo a stereotactic procedure for bilateral thalamic implantation of DBS leads through the ClearPoint® system. After the thalamic target for DBS is identified, cells will be infused directly into the anterior nucleus of the thalamus previous to lead implantation. Patients will be followed in the outpatient setting for up to a year after therapy application. Surgical, clinical, and radiographic data will be obtained during these visits
This study investigates the usefulness of high resolution electrical source imaging (HR-ESI) in the setting of presurgical evaluation of drug-resistant focal epilepsy in children. This method is based on an estimation of the intra-cerebral source that produces a signal recorded by scalp electrodes by solving the inverse problem, taking into account attenuation factors resulting from particular conductivity properties of the cerebral, peri-cerebral and cranial tissues. Electrical sources are then fused on structural magnetic resonance imaging (MRI). Scalp EEG recorded using 64 to 256 electrodes refers to as high resolution EEG (HR-EEG), leading to HR-ESI. Studies based on small population of children or on mixt population of children and adults showed that HR-ESI has accuracy values, i.e. percentage of true positives (electrical source localized in the brain area resected and success of surgery) and true negatives (electrical source localized outside the brain area resected and failure of surgery) among the total population, ranging from 50 to 80%. Discrepancies between studies could be explained by the limited number of patients included or by the mixture of pediatric and adult data. Another limitation of previously published studies is that the spatial pattern of dipole source distribution was not taken into account to determine prediction accuracy of ESI. Studies using magnetoencephalography (MEG) to perform magnetic source imaging (MSI) suggest that the spatial pattern of dipole source distribution needs to be considered, a spatially-restricted dipole distribution being associated with better post-surgical outcome when resected. To tackle these issues, the investigators aim to conduct the first large prospective multicentric study in children with focal epilepsy candidates to surgery to assess prediction accuracy of ESI based on the finding of tight clusters of dipoles. This is original as this pattern (tight versus loose cluster of dipoles) has been studied by several researchers using MEG but not using HR-EEG. The investigators make the hypothesis that HR-EEG will allow to identity good candidates for epilepsy surgery and thus to offer this underutilized treatment in more children with better post-surgical outcome. Among the secondary objectives, the investigators will address methodological issues related to the resolution of the inverse problem (methods using distributed sources models versus methods based on equivalent dipole estimation), the potential added value to model high-frequency oscillations (HFO), and the investigators will assess the cost-utility of the HR-ESI procedure.