View clinical trials related to Dystonia.
Filter by:This study will use a technique called blink reflex to study and compare how the brain controls muscle movement in patients with craniofacial dystonia, their first-degree relatives, and healthy, normal volunteers. People with dystonia have sustained muscle contractions that cause twisting and repetitive movements or abnormal postures. In focal dystonia, this happens in one area of the body, such as the hand, neck, or face. Three groups of people may be eligible for this study: 1) patients 18 years of age and older with craniofacial dystonia; 2) first-degree relatives of patients with craniofacial dystonia; and 3) normal volunteers matched in age to the patients. Candidates are screened with physical and neurological examinations. Participants undergo a blink reflex study. Patients with dystonia who are receiving botulinum toxin injections must stop the medication 3 months before participating in the study and must stop any other dystonia medications, such as benzodiazepines and anticholinergics, for 12 hours before the study. For the blink reflex procedure, subjects are seated in a comfortable chair with their hands placed on a pillow on their lap. Metal electrodes are taped to the forehead for delivering small electrical shocks that feel like very brief pinpricks. Subjects receive 25 to 50 electrical stimuli, some as single shocks and some in pairs. The electrical activity of muscles that respond to the stimuli is recorded with a computer. The study takes from about 1 to 2 hours.
This study will examine the action of sensory tricks on an occurrence known as surround inhibition when there is a disorder of muscle tone affecting a single body part in isolation. Surround inhibition refers to a situation that suppresses unwanted movements, known as dystonia, in surrounding muscles during voluntary actions. There are tricks-various actions-that people use to temporarily stop those unwanted movements. Such tricks can include touching the affected body part, placing an object in the mouth, pulling the hair, and others. Often these tricks are beneficial early in the illness but become less effective as it progresses. This study is guided by a hypothesis that sensory tricks will restore surround inhibition and by another hypothesis that it is the application of the tricks, not simply sensory input, that is effective in doing that restoring. Emphasis is on cervical dystonia, involuntary actions affecting the neck, in which the tricks commonly involve the cheeks and chin. The technique used in the study is transcranial magnetic stimulation (TMS). Patients ages 18 and older who have cervical dystonia with at least one effective trick and patients with no effective trick may be eligible for this study. There will also be a control group of healthy participants. Participants will be asked to show the sensory trick and may be asked to be videotaped. During the TMS procedure, they will be seated in a comfortable chair, with hands placed on a pillow on the lap. Small electrodes-soft strips that stick to the skin-will be placed on the skin to record the electrical activity of some muscles in the neck that are activated by the stimulation from TMS. In TMS, there will be a wire coil held over the scalp. A brief electrical current will be passed through the coil, creating a magnetic pulse that stimulates the brain. Patients will hear a click and may feel a pulling sensation on the skin under the coil. There may be muscle twitches of the face, arm, or leg. In addition, patients may be asked to tense certain muscles slightly or perform other simple actions so that the coil can be positioned appropriately. Patients will sometimes be asked to bite down and tap their teeth slightly for about 1-1/2 minutes at a time. They will be asked to show the sensory trick. The stimulation is usually not painful, although sometimes strong contractions of the scalp muscles can cause discomfort or a headache. Patients can ask to have the procedure discontinued at any time. The testing session takes about 2 hours, done on an outpatient basis.
This study will collect information on (tricks) patients with focal dystonia use to relieve their symptoms. Dystonia is a movement disorder caused by sustained muscle contractions often causing twisting and abnormal posturing. Dystonia may be generalized, affecting at least one leg and the trunk of the body, segmental, affecting adjacent body parts, or focal, affecting a single body part, such as the hand or eyelid. It may be task-specific, such as writer's, musician's or sportsman's cramps. Some patients with focal dystonia use (tricks), such as touching the face or hand, to stop or alleviate the abnormal movement. This study will survey the types of tricks people with focal dystonia use in order to learn more about the disorder. Patients 18 years of age and older with focal dystonia may be eligible for this study. Candidates will be screened for eligibility with a medical history, clinical evaluation, and review of their medical records. In one 30- to 45-minute clinic visit, participants will be interviewed about their dystonia symptoms and the tricks they use to relieve the symptoms. They may be asked to show the investigators how the tricks work
This study will use transcranial magnetic stimulation (TMS) and electrical stimulation of nerves to examine how the brain controls muscle movement in focal hand dystonia (writer's cramp). Normally, when a person moves a finger, the brain's motor cortex prevents the other fingers from moving involuntarily. Patients with focal hand dystonia have difficulty with individualized finger movements, possibly due to increased excitability of the motor cortex. Musicians, writers, typists, athletes and others whose work involves frequent repetitive movements may develop focal dystonia of the hand. Healthy normal volunteers and patients with focal dystonia 18 years of age and older may be eligible for this study. For the TMS procedure, subjects are seated in a comfortable chair with their hands placed on a pillow on their lap. An insulated wire coil is placed on the scalp. A brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the brain. This may cause muscle, hand or arm twitching if the coil is near the part of the brain that controls movement, or it may induce twitches or transient tingling in the forearm, head or face muscles. Subjects will be asked to move a finger. Just before this movement, a brief electrical stimulation will be applied to the end of either the second or fifth finger. Metal electrodes will be taped to the skin over the muscle for computer recording of the electrical activity of the hand and arm muscles activated by the stimulation. The testing will last 2-3 hours.
This study will use transcranial magnetic stimulation, or TMS (described below), to examine how the brain controls muscle movement to prevent unwanted movements in surrounding muscles. For example, when a person moves a finger, a part of the brain called the cortex prevents unwanted movements in other fingers by a process called cortical inhibition. In people with the muscle disorder dystonia, cortical inhibition does not work properly and patients suffer from uncontrolled and sometimes painful movements. A better understanding of how this process works in normal people may shed light on what goes wrong in dystonia and how the condition can be treated. Healthy normal volunteers 19 years of age and older may be eligible for this study. Candidates will be screened with a medical history and physical and neurological examinations. People with a current medical or surgical condition or neurological or psychiatric illness may not participate, nor may individuals who are taking medication that may influence nervous system function. Participants will undergo TMS to record the electrical activity of muscles in the hand and arm that are activated by magnetic stimulation. For the procedure, subjects are seated in a chair with their hands placed on a pillow in their laps. A wire coil in placed on their scalps. A brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the brain. Subjects will be asked to move their second finger in response to a loud beep or visual cue. In some trials, a brief, mild electrical shock will also be applied to the end of either the second or fifth finger. The shock is not painful. TMS may cause muscle, hand or arm twitching if the coil is near the part of the brain that controls movement, or it may induce twitches or temporary tingling in the forearm, head, or face muscles. The twitching may cause mild discomfort, but the procedure is rarely considered painful.
This study will use high-resolution magnetic resonance imaging (MRI) to look for subtle differences in brain anatomy between patients with focal hand dystonia (also called writer s cramp) and healthy normal volunteers. Patients with hand dystonia have prolonged muscle contractions that cause sustained twisting movements and abnormal postures. These abnormal movements often occur with activities such as writing, typing, playing certain musical instruments such as guitar or piano, or playing golf or darts. Patients with focal hand dystonia and healthy volunteers will be enrolled in this study. Patients will be recruited from NINDS s database of patients with focal hand dystonia. Volunteers will be selected to match the patients in age, sex and handedness. This study involves two visits to the NIH Clinical Center. The first visit is a screening visit, in which patients and volunteers will have a medical history, physical examination, neurological examination, and assessment of handedness. Women of childbearing age will be screened with a pregnancy test. Pregnant women are exclude from this study. Those who join the study will return for a second visit for magnetic resonance imaging. MRI uses a magnetic field and radio waves to produce images of the brain. For the procedure, the participant lies still on a stretcher that is moved into the scanner (a narrow cylinder containing the magnet). Earplugs are worn to muffle loud noises caused by electrical switching of radio frequency circuits used in the scanning process. The scan will last about 45 to 60 minutes, at most. Some volunteers may be asked to return for a third visit to obtain a second MRI on a different scanner.
This study will use transcranial magnetic stimulation (TMS) to examine how the brain controls muscle movement in dystonia. Dystonia is a movement disorder in which involuntary muscle contractions cause uncontrolled twisting and repetitive movement or abnormal postures. Dystonia may be focal, involving just one region of the body, such as the hand, neck or face. Focal dystonia usually begins in adulthood. Generalized dystonia, on the other hand, generally begins in childhood or adolescence. Symptoms begin in one area and then become more widespread. Healthy normal volunteers and patients with focal [or generalized] dystonia [between 21 and 65 years of age] may be eligible for this study. Participants will have transcranial magnetic stimulation. For this test, subjects are seated in a comfortable chair, with their hands placed on a pillow on their lap. An insulated wire coil is placed on the scalp. A brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the brain. (This may cause muscle, hand or arm twitching if the coil is near the part of the brain that controls movement, or it may induce twitches or transient tingling in the forearm, head or face muscles.) During the stimulation, subjects will be asked to either keep their hand relaxed or move a certain part of the hand in response to a loud beep or visual cue. Metal electrodes will be taped to the skin over the muscle for computer recording of the electrical activity of the hand and arm muscles activated by the stimulation. There are three parts to the study, each lasting 2-3 hours and each performed on a separate day.
This study will examine how the brain operates during execution and control of voluntary movement and what goes wrong with these processes in disease. It will use electroencephalography (EEG) and electromyography (EMG) to compare brain function in normal subjects and in patients with focal hand dystonia. In dystonia, involuntary muscle movements, or spasms, cause uncontrolled twisting and repetitive movement or abnormal postures. Focal dystonia involves just one region of the body, such as the hand, neck or face. EEG measures the electrical activity of the brain. The activity is recorded using wire electrodes attached to the scalp or mounted on a Lycra cap placed on the head. EMG measures electrical activity from muscles. It uses wire electrodes placed on the skin over the muscles. Adult healthy normal volunteers and patients with focal hand dystonia may be eligible for this study. Patients will be selected from NINDS's dystonia patient database. Participants will sit in a semi-reclining chair in a darkened room and be asked to move either their right index finger, right foot, or the angle of their mouth on the right side at a rate of one movement every 10 seconds. Brain and muscle activity will be measured during this task with EEG and EMG recordings.
This study will evaluate the effect of motor training on focal hand dystonia in people with writer's cramp and will examine whether this training affects excitability of the motor cortex of the brain. In dystonia, muscle spasms cause uncontrolled twisting and repetitive movement or abnormal postures. Focal dystonia involves just one part of the body, such as the hand, neck or face. Patients with focal hand dystonia have difficulty with individualized finger movements, which may be due to increased excitability of the motor cortex. Patients with hand dystonia 21 years of age or older may be eligible for this 2-month study. Those taking botulinum toxin injections must stop medication 3 months before entering the study. Participants will undergo a complete neurologic examination. They will undergo motor training with "constraint-induced movement therapy." This therapy involves constraining some fingers while allowing others to move. Participants will have the following tests and procedures at baseline (before motor training), after 4 weeks of motor training, and again after 8 weeks: - Handwriting analysis - A computerized program evaluates the degree of "automatic movements" the patient uses in writing, as well as writing pressure and speed. - Symptoms evaluation - Patients fill out a written questionnaire about symptoms and rate their improvement, if any, after training. - Transcranial magnetic stimulation - The patient is seated in a comfortable chair, and an insulated wire coil is placed on the scalp. Brief electrical currents pass through the coil, creating magnetic pulses that travel to the brain. These pulses generate very small electrical currents in the brain cortex, briefly disrupting the function of the brain cells in the stimulated area. The stimulation may cause muscle twitching or tingling in the scalp, face, arm or hand. During the stimulation, the patient is asked to slightly tense certain muscles in the hand or arm or perform simple actions. Electrodes are taped to the skin over the muscles activated by the stimulation, and the electrical activity in the muscles will be recorded with a computer. - Electroencephalogram (EEG) - Wire electrodes are taped to the scalp or placed on a Lycra cap the patient wears to record the brain's electrical activity. Participants will have 50-minute motor training sessions 3 times during the first week of the study, twice the second week and once each in weeks 3 and 4. In addition, they will be required to practice the training at home for 25 minutes each day during week 1 and 50 minutes each day for the remaining 3 weeks. Fingers not being trained will be splinted.
This study will use transcranial magnetic stimulation to examine how the brain controls muscle movement in focal and generalized types of dystonia. Dystonia is a movement disorder in which involuntary muscle contractions cause uncontrolled twisting or abnormal postures. Dystonia may be focal, involving just one region of the body, such as the hand, neck or face. Focal dystonia usually begins in adulthood. Generalized dystonia, on the other hand, generally begins in childhood or adolescence. Symptoms begin in one area and then become more widespread. Healthy normal volunteers and patients with focal or generalized dystonia 8 years of age and older may be eligible for this study. First-degree relatives of patients will also be enrolled. In transcranial magnetic stimulation, an insulated wire coil is placed on the subject's scalp and brief electrical currents are passed through the coil, creating magnetic pulses that pass into the brain. These pulses generate very small electrical currents in the cortex-the outer part of the brain-briefly disrupting the function of the brain cells in the stimulated area. The stimulation may cause muscle twitching or tingling in the scalp, face and limbs. During the stimulation, the subject will be asked to either keep the hand relaxed or to slightly tense certain muscles in the hand or arm. The test will last about 1.5 hours. The cause of dystonia is unknown. It is hoped that a comparison of brain activity in normal volunteers, patients and their relatives not affected by dystonia will help scientists learn why some people develop dystonic movements.