Clinical Trials Logo

Dystonia clinical trials

View clinical trials related to Dystonia.

Filter by:
  • Not yet recruiting  
  • Page 1 ·  Next »

NCT ID: NCT06386848 Not yet recruiting - Dystonia Clinical Trials

Strategy to Adapt Botulinum Toxin Doses in Dystonia

Start date: May 1, 2024
Phase:
Study type: Observational

The study is designed to observ and collect the doses of botulinum toxin injected in dystonia in different centres to compare the initial dose and the dose recommended. We we ll study the increase of the dose injected over the time, the side effects... The hypothesis is that we inject smaller doses than we could regarding the recommandations

NCT ID: NCT06367608 Not yet recruiting - Clinical trials for Task-Specific Focal Dystonia

MRgFUS Pallidotomy for the Treatment of Task Specific Focal Hand Dystonia (TSFD)

FUS Dystonia
Start date: June 2024
Phase: N/A
Study type: Interventional

The purpose of this study is to assess the safety and effectiveness of MRI-guided focused ultrasound (MRgFUS) for treating task specific focal hand dystonias (TSFD). TSFD is a type of dystonia that affects hand movements during specific tasks such as writing, playing instruments or typing, often causing involuntarily movements or cramping.

NCT ID: NCT06352268 Not yet recruiting - Parkinson Disease Clinical Trials

Lesioning Procedures for Movement Disorders

Start date: April 15, 2024
Phase:
Study type: Observational

Dystonia is a rare syndrome with varying etiologies. Similarly, tremor conditions refractory to medical management and disabling that they need surgical interventions are rare in our setting. So far there are no randomized controlled trials of pallidotomy for management of dystonia. There is scant literature on the long term efficacy and safety of Pallidotomy, thalamotomy and other such lesioning procedures in the management of movement disorders. The current literature is significantly plagued by publication bias as case reports with successful outcomes are likely to be selectively published in journals or conference abstracts. Lesioning procedures though seem to be effective are often considered to be risky, especially bilateral pallidotomy is not preferred by several centres. However, our center routinely performs simultaneous bilateral pallidotomy. To generate long term data on the efficacy and safety of lesioning procedures in rare diseases like dystonias especially the effect of functional neurosurgery on varying etiologies of the disease, robust registries are required which collect data on all consecutive patients who undergo the procedure.

NCT ID: NCT06328114 Not yet recruiting - Clinical trials for Isolated Cervical Dystonia

Accelerating TMS for Cervical Dystonia

Start date: July 1, 2024
Phase: N/A
Study type: Interventional

This study aims to investigate the impact of accelerated transcranial magnetic stimulation (TMS) on brain function and behavior in patients with focal cervical dystonia. Previous research demonstrated that individualized TMS improved writing behavior in focal hand dystonia after one session. In this study, we aim to expand the application on TMS on focal cervical dystonia. The current study administers four TMS sessions in a day. The research involves 9 in-person visits. The effect of TMS will be assessed using functional MRI brain scans and behavioral measurements. The risk of TMS includes seizures; the potential risk of seizures from TMS is mitigated through careful screening, adhering to safety guidelines. The study's main benefit is enhancing dystonic behavior and deepening the understanding of brain changes caused by TMS in cervical dystonia, paving the way for further advancements in clinical therapy for this condition.

NCT ID: NCT06174948 Not yet recruiting - Dystonia Clinical Trials

The Use of the CUE1 in People With Parkinson's Disease and Related Disorders

Start date: March 2024
Phase: N/A
Study type: Interventional

People with Parkinson's disease (PD) commonly experience a range of both motor (e.g., bradykinesia, rigidity, tremor, and postural instability) and non-motor (e.g., fatigue, psychiatric and behavioural disturbances, autonomic dysfunction, cognitive impairment, sleep dysfunction and olfactory loss) features. Currently, it is challenging to alleviate these symptoms with first-line treatment, the medications such as levodopa. The CUE1 is a non-invasive device, which is approved for sale in the UK market as a Class I low risk device. It is worn on the sternum or other part of the body such as the forearm and attaches to the skin via an adhesive patch which has been dermatologically tested and approved. The CUE1 delivers pulsing cueing and vibrotactile stimulation to help improve symptoms in people with PD and it has shown to be effective in doing so in previous small case studies. This 9-week feasibility study aims to investigate the feasibility, safety, tolerability and effect of using the CUE1 as an intervention to improve motor and non-motor symptoms in people with PD and related movement disorders. People with clinical diagnosis of idiopathic PD and related disorders including those with progressive supranuclear palsy, multiple system atrophy, corticobasal degeneration, and vascular Parkinsonism as well as atypical dystonias and tremor disorders aged over 18 years old who have the capacity to provide a written consent form to take part in the study, will receive as intervention to wear the CUE1 device at home, on daily basis while carrying out their activities of daily living. Participants will also have to attend four face-to-face appointments of approximately half a day, at weeks -0, -3, -6 and -9 of the study to discuss how they are getting on with using the CUE1 and complete questionnaires on their symptoms, walking, balance, and movement tests as well as a participant's clinical diary.

NCT ID: NCT06038097 Not yet recruiting - Dystonia Clinical Trials

Efficacy and Safety of Radiofrequency Pallidotomy in the Management of Dystonia

Start date: October 1, 2023
Phase: N/A
Study type: Interventional

Generalized dystonia is treated with pallidotomy. This is based on observational data which is significantly limited by publication bias and there are no RCTs. The case reports focus on successful outcomes and case series have an inherent selection bias. Bilateral pallidotomy has been used in our institute in a series of patients with generalized and segmental dystonia and have been seen to show good efficacy. However, the existing literature suggests that it is also associated with dysphagia and dysarthria in some cases and thus simultaneous bilateral pallidotomy is not preferred in several centres. However, our center routinely performs simultaneous bilateral pallidotomy. The response rates and compliations of the procedure have not been systematically studied in RCT and we need to generate data on the efficacy and safety of Pallidotomy on generalized and segmental dystonia. This randomized controlled trial will fill the void in knowledge in this field.

NCT ID: NCT05715138 Not yet recruiting - Cervical Dystonia Clinical Trials

Comparison of Pallidal With Subthalamic Deep Brain Stimulation for Cervical Dystonia

Start date: September 1, 2023
Phase: N/A
Study type: Interventional

Cervical dystonia (CD), also known as spasmodic torticollis, is a type of focal dystonia, mainly manifesting as involuntary head turning or tilting, or holding a twisted posture. Although it can be alleviated by injection of botulinum toxin, the effect is temporary so that patients require multiple injections. Deep Brain Stimulation (DBS) targeting on globus pallidus internus (GPi) or subthalamic nucleus (STN) has been proved to be a safe and effective strategy for primary cervical dystonia, even for those medically refractory cases. However, the question of which target is better has not been clarified. Therefore, the invstigators design this randomized and controlled trial, aiming to compare the differences between GPi-DBS and STN-DBS for cervical dystonia in the improvement of symptoms , quality of life, mental status, cognitive status, as well as in stimulation parameters and adverse effects. The invstigators hypothesize that STN-DBS will outperform GPi-DBS at short-term follow-up, while the superiority will disappear and the efficacy of the two group will become similar at long-term follow-up.

NCT ID: NCT05671068 Not yet recruiting - Myoclonus-Dystonia Clinical Trials

EMOTION & COGNITION IN MYOCLONUS DYSTONIA (AGENT10-ECODYST)

Start date: January 2023
Phase:
Study type: Observational

Background: Myoclonus dystonia (DYT-SGCE) is characterized by myoclonus and dystonia. Such condition is associated with a high prevalence of psychiatric symptoms which are part of the phenotype. The mechanisms underlying these non-motor symptoms are still poorly understood. Objective: To investigate the neural correlates of cognition and emotion in DYT-SGCE. Design: Participants will have 1 - 2 visits at the clinical center. The total participation time is less than 24 hours. Participants will have a medical interview and a neurological exam. They may give a urine sample before MRI. Participants will have a short neuropsychologic and psychiatric interviews. Participants will have MRI scans. They will do small tasks or be asked to imagine things during the scanning.

NCT ID: NCT05612464 Not yet recruiting - Dystonia Clinical Trials

Enhancing Sensorimotor Processing in Children With Dystonia

Start date: February 1, 2023
Phase:
Study type: Observational

Dystonia is a severely disabling movement disorder with no cure, in which people suffer painful muscle spasms causing twisting movements and abnormal postures. There are many causes, including genetic conditions and brain injury. The most common cause in childhood is dystonic cerebral palsy (CP) which often affects the whole body. The underlying mechanisms are unknown, but there is growing evidence to implicate abnormal brain processing by the brain of incoming "sensory" information (e.g., signals to the brain from our senses of touch and body position): the distorted perception of these signals disrupts the way the brain produces instructions for planning and performing movements. The investigator's previous studies have shown that the way the brain processes sensory information related to movement is abnormal in children with dystonia and dystonic CP, by using methods that record the EEG (electroencephalogram - brain wave signals) and/or EMG (electromyogram - electrical signal from muscles). A specific brain rhythm (called mu) typically shows well-defined changes in response to movement, and reflects processing of sensory information. The investigator's work shows these rhythm changes are abnormal in children with dystonia/dystonic CP. This study will explore if these findings can improve treatment. In particular the study team will investigate whether children and young people with dystonia/dystonic CP can enhance these mu rhythm responses during a movement task by using feedback of their brain rhythms displayed as a cartoon/game on a computer. The investigators will also assess whether enhanced mu activity is associated with improved movement control. This would open future possibilities to use such devices for therapy/rehabilitation. Children and young people with dystonia/dystonic CP aged 5-25 years will be recruited, along with age-matched controls. Studies will last 2-3 hours with time for breaks and will be conducted at Evelina London Children's Hospital and Barts Health Trust, with the option for home visits if preferable for families.

NCT ID: NCT05467228 Not yet recruiting - Laryngeal Dystonia Clinical Trials

Laryngeal Vibro-tactile Stimulation as a Non-invasive Symptomatic Treatment for Spasmodic Dysphonia

Start date: January 1, 2025
Phase: Phase 2
Study type: Interventional

The general aim of the research is to provide scientific evidence that vibro-tactile stimulation (VTS) represents a non-invasive form of neuromodulation that can induce measurable improvements in the speech of patients with laryngeal dystonia (LD) - also called spasmodic dysphonia (SD).