View clinical trials related to Dystonia.
Filter by:Many cervical dystonia (CD) patients are limited in their ability to travel to the clinic for follow-up in between injection visits. A telemedicine visit at the time of peak effectiveness of neurotoxin treatment may be valuable in informing the neurologist's choice of muscle selection and/or dose for the next injection visit. The primary objective of this study is to investigate both patient and physician satisfaction with the use of our telemedicine tool for this type of follow-up. After assessment of the subject, the neurologist will decide whether or not the telemedicine visit was informative to the upcoming injection visit. Subjects will answer questions at the end of the visit regarding their satisfaction with the follow-up and overall telemedicine communication. The principle investigator will complete a similar survey with additional questions about information gathered from the visit to assess the primary objective. A secure video communications platform will be used for the visit, which will occur 2-4 weeks after the patient's last neurotoxin injection (around the time of peak effectiveness). The investigating neurologist will remotely assess the patient and make notes for the next injection visit.
Botulinum toxin injections are the treatment of choice for cervical dystonia. Even if this treatment is successful for most of the patients, partials or completes failures still remained. Usually, botulinum toxin injections are realized by clinical localization techniques (observation and palpation of target muscles). The use of Ultrasonography to guide injections of Botulinum toxin has theoretical benefits (as an improved precision, an improved reproducibility, the targeting of deep-seated muscles, and a lower risk of adverse events) but its interest has never been demonstrated.
Efficient gait requires effective postural control, both static and dynamic. Hence, postural disorders may affect gait. Yet, very little is known about the specific effects of focal postural disorders such as cervical dystonia (CD) and blepharospasm (BS) on patients' mobility. The present research therefore aims at analyzing gait characteristics in patients presenting with these conditions in order to document possible gait alterations. In addition, the investigators will explore the effect of botulinum toxin treatment, which the most frequently used therapeutic option, on the patients' gait characteristics. Indeed, while the treatment improves both dystonia and pain, and therefore quality of life, its influence on gait is presently unknown. the investigators aim at filling this knowledge gap
The purpose of this study is to test the hypothesis that the efficacy and safety of Meditoxin® are not inferior to Botox®'s in the treatment of Cervical Dystonia.
This protocol serves as a data collection tool for individuals with variants (missense, nonsense, frameshifts) in the IRF2BPL gene (MIM 611720), which causes Neurodevelopmental Regression, Seizures, Autism and Developmental Delay (NEDAMSS, MIM 618088) and may be involved in other neurodevelopmental presentations. This information will be analyzed to develop a better understanding of the findings and progression of symptoms in individuals with variants in the IRF2BPL gene.
6 patients with jaw-closing dystonia will be treated with neuromuscular electrical stimulation over 8 weeks. The distance the mouth can be opened voluntarily and the oro-mandibular dystonia questionnaire (OMDQ-25) will be employed to determine whether there is any objective change in jaw opening or evidence of functional improvement.
This is a study of subjects with the St. Jude Medical Infinity deep brain stimulation (DBS) system who undergo an MRI imaging procedure. Enrollment may occur before DBS implant, or when an MRI scan is planned in a subject with an existing implant. There will be a follow-up visit one month after the MRI procedure to document any adverse events and verify device functionality.
An observational study aiming to study the natural history of a UK-wide patient cohort with ATP1A3-related disease.
This project aims to investigate novel ways to deliver brain stimulation to Essential Tremor (ET) patients by introducing software changes to their existing devices. The study team aims to investigate safety and efficacy of these new stimulation parameters in patients with ET.
A 48-Week Prospective, Double-Blinded, Randomized, Cross-over design in Multicenter Study of, 250 unit of Abobotulinum Toxin Type A (Dysport) and 50 unit of Neubotulinum Toxin Type A (Neuronox) injection for Cervical Dystonia in patient diagnosed with cervical dystonia according to clinical diagnosis. It was designed to evaluate the efficacy, safety, tolerability, quality of life and the comparesion the improvement after treatment by of Abobotulinum Toxin Type A (Dysport) injection versus Neubotulinum Toxin Type A (Neuronox)Injection.