Diabetes Mellitus, Type 1 Clinical Trial
— CASPEROfficial title:
CASPER Study: Copeptin in Adolescent Participants With Type 1 Diabetes and Early Renal Hemodynamic Function
Verified date | March 2022 |
Source | University of Colorado, Denver |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Over 1.25 million Americans have type 1 diabetes (T1D), increasing risk for early death from cardiorenal disease. The strongest risk factor for cardiovascular disease (CVD) and mortality in T1D is diabetic kidney disease (DKD). Current treatments, such as control of hyperglycemia and hypertension, are beneficial, but only partially protect against DKD. Hyperfiltration is common in youth with T1D, and predicts progressive DKD. Hyperfiltration is also associated with early changes in intrarenal hemodynamic function, including increased renal plasma flow (RPF) and glomerular pressure. Intrarenal hemodynamic function is strongly influenced by the renin-angiotensin-aldosterone system (RAAS), which is also considered a key player in the pathogenesis of DKD. Preliminary data demonstrate differences in intrarenal hemodynamic function and RAAS activation in early and advanced DKD in T1D. However, the pathophysiology contributing to the differences observed in RAAS activation and intrarenal hemodynamic function in T1D are poorly defined Animal research demonstrates that arginine vasopressin (AVP) acts directly to modify intrarenal hemodynamic function, but also indirectly by activating RAAS. Preliminary data suggest that elevated copeptin, a marker of AVP, which predicts DKD in T1D adults, independently of other risk factors. However, no human studies to date have examined how copeptin relates to intrarenal hemodynamic function in early DKD in T1D. A better understanding of this relationship is critical to inform development of new therapies targeting the AVP system in T1D. Accordingly, in this study, the investigators propose to define the relationship between copeptin and intrarenal hemodynamics in early stages of DKD, by studying copeptin levels, renal plasma flow, and glomerular filtration in youth (n=50) aged 12-21 y with T1D duration < 10 y.
Status | Completed |
Enrollment | 50 |
Est. completion date | August 1, 2021 |
Est. primary completion date | October 19, 2019 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 12 Years to 21 Years |
Eligibility | Inclusion Criteria: - Antibody+ T1D with <10 yr duration - Age 12-21 years - BMI = 5%ile - Weight<350 lbs and > 57 lbs. - No anemia - HbA1c <12% Exclusion Criteria: - Severe illness, recent diabetic ketoacidosis (DKA) - Estimated Glomerular Filtration Rate (eGFR) <60ml/min/1.73m2 or creatinine > 1.5mg/dl or history of ACR=300mg/g - Anemia or allergy to shellfish or iodine - Pregnancy or nursing - MRI scanning contraindications (claustrophobia, implantable devices, >350 lbs) - Angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARB), diuretics, sodium-glucose co-transport (SGLT) 2 or 1 blockers, daily NSAIDs or aspirin, sulfonamides, procaine, thiazolsulfone or probenecid, atypical antipsychotics and steroids |
Country | Name | City | State |
---|---|---|---|
United States | Children's Hospital Colorado | Aurora | Colorado |
Lead Sponsor | Collaborator |
---|---|
University of Colorado, Denver |
United States,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Copeptin Levels | Measured by fasting blood draw; Copeptin will be measured by ultrasensitive assays on KRYPTOR Compact Plus analyzers using the commercial sandwich immunoluminometric assays (Thermo Fisher Scientific, Waltham, MA). The copeptin assay has a lower limit of detection of 0.9 pmol/L, and a sensitivity of <2pmol/L. Elevated copeptin will be defined as >13pmol/L, which is >97.5th percentile for healthy adults (68). | 4 hours | |
Primary | Effective Renal Plasma Flow (ERPF) | Measured by para-aminohippurate (PAH) clearance; An intravenous (IV) line was placed, and participants were asked to empty their bladders. Spot plasma and urine samples were collected prior PAH infusion. PAH (2 g/10 mL, prepared at the University of Minnesota, with a dose of [weight in kg]/75 × 4.2 mL; IND #140129) was given slowly over 5 min followed by a continuous infusion of 8 mL of PAH and 42 mL of normal saline at a rate of 24 mL/h for 2 h. After an equilibration period, blood was drawn at 90 and 120 min, and ERPF was calculated as PAH clearance divided by the estimated extraction ratio of PAH, which varies by the level of GFR (13). We report absolute ERPF (mL/min) in the main analyses because the practice of indexing ERPF for body surface underestimates hyperperfusion, and body surface area (BSA) calculations introduce noise into the clearance measurements. | 4 hours | |
Primary | Glomerular Filtration Rate (GFR) | Measured by iohexol clearance; An intravenous (IV) line was placed, and participants were asked to empty their bladders. Spot plasma and urine samples were collected prior to iohexol infusion. Iohexol was administered through bolus IV injection (5 mL of 300 mg/mL; Omnipaque 300, GE Healthcare). An equilibration period of 120 min was used and blood collections for iohexol plasma disappearance were drawn at +120, +150, +180, +210, +240 min (11). Because the Brøchner-Mortensen equation underestimates high values of GFR, the Jødal-Brøchner-Mortensen equation was used to calculate the GFR (12). We report absolute GFR (mL/min) in the main analyses because the practice of indexing GFR for body surface underestimates hyperfiltration, and body surface area (BSA) calculations introduce noise into the clearance measurements. | 4 hours | |
Secondary | Renal Perfusion | Measured by Arterial Spin Labeling (ASL) MRI; ASL MRI: ROI analysis will be used to estimate (delta) M (difference in signal intensity between non-selective and selective inversion images). Using the same ROI, M0 will be estimated from the proton density image. T1 measurements from the same ROI will be obtained by fitting the signal intensity vs. inversion time data as described previously (104) using XLFit (ID Business Solutions Ltd., UK) or T1 maps created using MRI Mapper (Beth Israel Deaconess Medical Center, Boston). Partition coefficient will be assumed to be 0.8 ml/gm (105, 106). These values will then be used to estimate regional blood flow. | 10 min | |
Secondary | Renal Oxygenation | Measured by Blood Oxygen Level Dependent (BOLD) MRI; Regions of interest (ROI) analysis for BOLD MRI will be performed on a Leonardo Workstation (Siemens Medical Systems, Germany). Typically, 1 to 3 regions in each, cortex and medulla, per kidney per slice will be defined leading to a total of about 10 ROIs per region (cortex and medulla) per subject. The mean and standard deviation of these 10 measurements will be used a R2* measurement for the region, for the subject and for that time point. These data are used to calculate kidney oxygen availability (R2*), which is the BOLD-MRI outcome. | 60 min |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04030091 -
Pulsatile Insulin Infusion Therapy in Patients With Type 1 and Type 2 Diabetes Mellitus
|
Phase 4 | |
Terminated |
NCT03605329 -
Evaluation of the Severity of Cardiovascular Autonomic Neuropathy in Type 1 Diabetic Patients With OSAS
|
N/A | |
Completed |
NCT01696266 -
An International Survey on Hypoglycaemia Among Insulin-treated Patients With Diabetes
|
||
Recruiting |
NCT06050642 -
Study of the Impact of PROximity Support for Patients With Type 1 DIABetes Treated With an Insulin Pump or Closed Loop.
|
N/A | |
Completed |
NCT05107544 -
Metabolic, Physical Fitness and Mental Health Effects of High Intensity Interval Training (HIIT) in Adolescents With Type 1 Diabetes
|
N/A | |
Active, not recruiting |
NCT04443153 -
Adapting Diabetes Treatment Expert Systems to Patient in Type 1 Diabetes
|
N/A | |
Completed |
NCT04569994 -
A Study to Look at the Safety of NNC0363-0845 in Healthy People and People With Type 1 Diabetes
|
Phase 1 | |
Completed |
NCT04521634 -
Glycaemic Variability in Acute Stroke
|
||
Completed |
NCT04089462 -
Effects of Frequency and Duration of Exercise in People With Type 1 Diabetes A Randomized Crossover Study
|
N/A | |
Completed |
NCT03143816 -
Study Comparing Prandial Insulin Aspart vs. Technosphere Insulin in Patients With Type 1 Diabetes on Multiple Daily Injections: Investigator-Initiated A Real-life Pilot Study-STAT Study
|
Phase 4 | |
Completed |
NCT01892319 -
An International Non-interventional Cohort Study to Evaluate the Safety of Treatment With Insulin Detemir in Pregnant Women With Diabetes Mellitus. Diabetes Pregnancy Registry
|
||
Recruiting |
NCT04039763 -
RT-CGM in Young Adults at Risk of DKA
|
N/A | |
Completed |
NCT04042207 -
Diabeloop for Highly Unstable Type 1 Diabetes
|
N/A | |
Not yet recruiting |
NCT06068205 -
COMPARATIVE ANALYSIS OF THE MORPHO-MECHANICAL PROPERTIES OF RED BLOOD CELLS EXTRACTED FROM DIABETIC PATIENTS WITH AND WITHOUT MICROVASCULAR COMPLICATIONS
|
||
Recruiting |
NCT05909800 -
Prolonged Remission Induced by Phenofibrate in Children Newly Diagnosed With Type 1 Diabetes.
|
Phase 2 | |
Active, not recruiting |
NCT04974528 -
Afrezza® INHALE-1 Study in Pediatrics
|
Phase 3 | |
Completed |
NCT04530292 -
Home Intervention and Social Precariousness in Childhood Diabetes
|
N/A | |
Completed |
NCT05428943 -
OPT101 in Type 1 Diabetes Patients
|
Phase 1 | |
Recruiting |
NCT03988764 -
Monogenic Diabetes Misdiagnosed as Type 1
|
||
Completed |
NCT05597605 -
The SHINE Study: Safety of Implant and Preliminary Performance of the SHINE SYSTEM in Diabetic Subjects
|
N/A |