View clinical trials related to Critical Illness.
Filter by:Biofilm is a microstructure organised into aggregates of microbiological species within a polymeric matrix. As early as the 2000s, the Centers for Disease Control and Prevention (CDC) recognised the possible role of the biofilm lining endotracheal endotracheal tubes in the development of ventilator-associated pneumonia (VAP) , the most common infection in intensive care, with a high morbidity and mortality rate and a significant increase in hospital costs. Targeting biofilm therefore now appears to be a new area of interest for limiting the risk of VAP, and this rationale has led to the development of an intraluminal for abrading biofilm deposited on the inside of the intubation probe . Evaluation of this type of strategy nevertheless justifies the introduction of more precise methods for characterisation of the biofilm. To this end, the investigator carried out an initial clinical study describing the biofilm on intubation probes, BIOPAVIR 1, showing the existence of several biofilm structures, each associated with a specific microbiological signature. Several limitations including a lack of power due to an insufficient number of patients and the use of number of patients, and the use of a confocal microscopy technique with poor axial without the possibility of acquiring metabolic images of the biofilm. Based on the previous description of biofilm by optical coherence tomography (OCT), and a recent experience with an optimised form of high-resolution OCT, called full-field OCT, the investigator hypothesise that full-field OCT will allow more accurate characterisation of biofilm, due to its high spatial resolution and its potential ability to capture metabolic activity in the biofilm BIOPAVIR 2 proposes to use the performance of full-field OCT to better characterise the biofilm lining endotracheal tubes in patients undergoing mechanical ventilation in intensive care units. This project represents a first step towards understanding the link between the development of biofilm on intubation and the occurrence of VAP
The aim of this prospective randomized study is to evaluate blood loss caused by laboratory blood draws in patients in the paediatric ICU (Intensive Care Unit) of a tertiary hospital among two groups of patients with established long-term or mid-term intravenous access. In the first group, patients will undergo blood draws using the standard method. In the second group of patients, blood draws will be performed using a closed system.
This study is a multicenter randomized controlled trial to determine the effectiveness of a closed loop/autonomous oxygen titration system (O2matic PRO100) to maintain normoxemia (goal range SpO2 90-96%, target 93%) during the first 72 hours of acute injury or illness, compared to standard provider-driven methods (manual titration with SpO2 target of 90-96%).
The hypothesis of the study is that a resuscitation order other than full code is associated with increased mortality among critically ill patients. By incorporating conventional variables associated with death such as age, sex, and Simplified Acute Physiological Score, as well as including the new Clinical Frailty Scale in a statistical model, the aim is to investigate whether there is still an increased risk of death that remains unexplained.
ICU-Acquired weakness (ICU-AW) is a significant complication of critical illness. ICU-AW is common in patients with sepsis, systemic inflammatory response, and mechanically ventilated. It is estimated that around 50% of patients recovering from the primary illness remain in intensive care with characteristic muscle weakness. This leads to dependence on mechanical ventilation, prolonging costly intensive care hospitalization. The myopathy causes persistent functional impairment, endangering patients long after hospital discharge. Magnetic stimulation prevents inactivation atrophy of skeletal muscles, as demonstrated in the mobilized limb of rats. Transcutaneous magnetic stimulation of the quadriceps via the femoral nerve is a safe and painless method even when applied to humans. In patients with chronic obstructive pulmonary disease (COPD), quadriceps magnetic stimulation increased spontaneous contraction force compared to the control group and improved quality of life. Patients with COPD tolerate quadriceps magnetic stimulation well, as it does not affect oxidative stress in muscles but does increase the size of slow-twitch muscle fibers. In intensive care medicine, magnetic stimulation has been primarily used for diagnostic purposes in assessing diaphragm function, peripheral muscle strength assessment, and transcranial electrical stimulation as a diagnostic tool and therapeutic stimulation of brain cells. With the development of modern transcutaneous magnetic stimulators, the possibility arises for their use in intensive care medicine for therapeutic purposes such as preventing critical illness myopathy. To date, no research has been conducted on the use and effectiveness of magnetic stimulation of peripheral muscles in critically ill individuals. The aim of the study is to investigate the effect of Functional Muscle Magnetic Stimulation (FMS) on the development of ICU-AW.
This study is a Phase 3, multi-center, Bayesian Adaptive Sequential Platform Trial testing the effectiveness of different prehospital airway management strategies in the care of critically ill children. Emergency Medical Services (EMS) agencies affiliated with the Pediatric Emergency Care Applied Research Network (PECARN) will participate in the trial. The study interventions are strategies of prehospital airway management: [BVM-only], [BVM followed by SGA] and [BVM followed by ETI]. The primary outcome is 30-day ICU-free survival. The trial will be organized and executed in two successive stages. In Stage I of the trial, EMS personnel will alternate between two strategies: [BVM-only] or [BVM followed by SGA]. The [winner of Stage I] will advance to Stage II based upon results of Bayesian interim analyses. In Stage II of the trial, EMS personnel will alternate between [BVM followed by ETI] vs. [Winner of Stage I].
This observational study aims to describe the incidence of episodes of disconnected consciousness (including near-death experience (NDE)) and episodes of connected consciousness in patients admitted to the resuscitation room, who survived a critical condition and who meet at least one of these criteria during their stay in the resuscitation room: (1) deep sedation, (2) intubation, (3) cardiopulmonary resuscitation, or (4) (non-drug-induced) Glasgow Coma Scale score = 3. We also investigate the potential (neuro)physiological markers and biomarkers. In order to help determine the potential risk factors of such episodes, cognitive factors such as dissociative propensity are also investigated. Unexpected visual and auditory stimuli will be displayed. In addition, we assess the evolution of memory, as well as short- and long-term consequences on quality of life, anxiety, and attitudes towards care. Memory of patients who did not meet the above-mentioned criteria are also investigated. A group of 15 healthy participants will be invited to test the stimuli display. Finally, (neuro)physiological parameters of a subsample of dying patients are also investigated.
The aim of this study was to identify and validate novel biomarkers for predict acute kidney injury (AKI) subphenotype, major adverse kidney events and other poor outcomes.
Most ICU patients experience sleep and circadian disruption (SCD), which causes a profound negative impact on patients, such as prolonged mechanical ventilation, glucose intolerance, and the occurrence of delirium. In order to better promote the alignment of circadian rhythm in ICU patients, this project will explore the prevalence of SCD and a series of influencing factors contributing to SCD in ICU patients, to help construct targeted intervention programs in the future.
The physiological reserves of critically ill patients are relatively low, and the risk of complications related to tracheal intubation in the ICU is higher than in the operating room. ICU tracheal intubation complications account for approximately 40% -45% of patients, including severe hypotension (10% -43%), severe hypoxemia (9% -25%), and cardiac arrest (2% -3%).Ciprofol is a novel 2,6-disubstituted phenol derivative that targeting γ-aminobutyric acid type A (GABAA)-receptor. There are four indications of ciprofol that have been approved by NMPA in recent two years: sedation and anesthesia in non-tracheal intubation procedure/operation, induction and maintenance of general anesthesia, sedation during intensive care, sedation and maintenance in gynecological outpatient surgery. The aim of this study is to compare the effects of propofol and propofol on the circulatory system during tracheal intubation in ICU patients, in order to provide a safer induction sedation regimen for emergency tracheal intubation in critically ill patients.