COVID Clinical Trial
— UPSATOfficial title:
UPright Incline Positioning in COVID-19 Patients for Oxygen SATuration Improvement With Hypoxemic Respiratory Failure (UPSAT)
NCT number | NCT04344561 |
Other study ID # | IRB00246834 |
Secondary ID | |
Status | Terminated |
Phase | N/A |
First received | |
Last updated | |
Start date | May 25, 2020 |
Est. completion date | May 1, 2022 |
Verified date | June 2022 |
Source | Johns Hopkins University |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
COVID-19 is a respiratory illness caused by SARS-CoV-2 with a range of symptoms from mild, self-limiting respiratory tract infections to severe progressive pneumonia, multiorgan dysfunction and death. A portion of individuals with COVID-19 experience life-threatening hypoxia requiring supplemental oxygen and mechanical ventilation. Management of hypoxia in this population is complicated by contraindication of non-invasive ventilation and limitations in access to mechanical ventilation and critical care staff given the clinical burden of disease. Positional therapy is readily deployable and may ultimately be used to treat COVID-19 related respiratory failure in resources limited settings; and, it has been demonstrated to improve oxygenation and is easy to implement in the clinical setting. The overall goal of this randomized controlled trial is to establish the feasibility of performing a randomized trial using a simple, minimally invasive positional therapy approach to improve hypoxia and reduce progression to mechanical ventilation. The objectives are to examine the effectiveness and feasibility of maintaining an inclined position in patients with confirmed or suspected COVID-19 associated hypoxemic respiratory failure. The investigators hypothesize that (1) oxyhemoglobin saturation will improve with therapy, (2) participants will tolerate and adhere to the intervention, and that (3) participants who adhere to positional therapy will have reduced rates of mechanical ventilation at 72 hours. If successful, this feasibility trial will demonstrate that a simple, readily deployed nocturnal postural maneuver is well tolerated and reverses underlying defects in ventilation and oxygenation due to COVID-19. It will also inform the design of a pivotal Phase III trial with estimates of sample sizes for clinically relevant outcomes.
Status | Terminated |
Enrollment | 7 |
Est. completion date | May 1, 2022 |
Est. primary completion date | May 1, 2022 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - COVID-19 positive - Pneumonia defined as hospitalization for acute (< 7 days) onset of symptoms (cough, sputum production, or dyspnea). - Hypoxemia defined as = 2 L/min oxygen Exclusion Criteria: - Intubation - Inability to lie supine |
Country | Name | City | State |
---|---|---|---|
United States | Johns Hopkins Bayview Hospital | Baltimore | Maryland |
United States | Johns Hopkins Hospital | Baltimore | Maryland |
Lead Sponsor | Collaborator |
---|---|
Johns Hopkins University |
United States,
Boudewyns A, Punjabi N, Van de Heyning PH, De Backer WA, O'Donnell CP, Schneider H, Smith PL, Schwartz AR. Abbreviated method for assessing upper airway function in obstructive sleep apnea. Chest. 2000 Oct;118(4):1031-41. — View Citation
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 Feb 15;395(10223):507-513. doi: 10.1016/S0140-6736(20)30211-7. Epub 2020 Jan 30. — View Citation
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020 Apr 30;382(18):1708-1720. doi: 10.1056/NEJMoa2002032. Epub 2020 Feb 28. — View Citation
Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013 Jun 6;368(23):2159-68. doi: 10.1056/NEJMoa1214103. Epub 2013 May 20. — View Citation
Hakala K, Maasilta P, Sovijärvi AR. Upright body position and weight loss improve respiratory mechanics and daytime oxygenation in obese patients with obstructive sleep apnoea. Clin Physiol. 2000 Jan;20(1):50-5. — View Citation
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24. Erratum in: Lancet. 2020 Jan 30;:. — View Citation
Ikeda H, Ayuse T, Oi K. The effects of head and body positioning on upper airway collapsibility in normal subjects who received midazolam sedation. J Clin Anesth. 2006 May;18(3):185-93. — View Citation
Meng L, Qiu H, Wan L, Ai Y, Xue Z, Guo Q, Deshpande R, Zhang L, Meng J, Tong C, Liu H, Xiong L. Intubation and Ventilation amid the COVID-19 Outbreak: Wuhan's Experience. Anesthesiology. 2020 Jun;132(6):1317-1332. doi: 10.1097/ALN.0000000000003296. — View Citation
Neill AM, Angus SM, Sajkov D, McEvoy RD. Effects of sleep posture on upper airway stability in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 1997 Jan;155(1):199-204. — View Citation
Oksenberg A, Khamaysi I, Silverberg DS, Tarasiuk A. Association of body position with severity of apneic events in patients with severe nonpositional obstructive sleep apnea. Chest. 2000 Oct;118(4):1018-24. — View Citation
Oksenberg A, Silverberg DS. The effect of body posture on sleep-related breathing disorders: facts and therapeutic implications. Sleep Med Rev. 1998 Aug;2(3):139-62. — View Citation
Penzel T, Möller M, Becker HF, Knaack L, Peter JH. Effect of sleep position and sleep stage on the collapsibility of the upper airways in patients with sleep apnea. Sleep. 2001 Feb 1;24(1):90-5. — View Citation
Scaravilli V, Grasselli G, Castagna L, Zanella A, Isgrò S, Lucchini A, Patroniti N, Bellani G, Pesenti A. Prone positioning improves oxygenation in spontaneously breathing nonintubated patients with hypoxemic acute respiratory failure: A retrospective study. J Crit Care. 2015 Dec;30(6):1390-4. doi: 10.1016/j.jcrc.2015.07.008. Epub 2015 Jul 16. — View Citation
Scholten EL, Beitler JR, Prisk GK, Malhotra A. Treatment of ARDS With Prone Positioning. Chest. 2017 Jan;151(1):215-224. doi: 10.1016/j.chest.2016.06.032. Epub 2016 Jul 8. Review. — View Citation
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020 Mar 17;323(11):1061-1069. doi: 10.1001/jama.2020.1585. Erratum in: JAMA. 2021 Mar 16;325(11):1113. — View Citation
* Note: There are 15 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Other | Acute change in oxyhemoglobin saturation | Mean oxyhemoglobin saturation (percentage) during final 7 minutes in a position. | During the final 7 minutes at each position, up to 72 hours | |
Primary | Incidence of Mechanical Ventilation | Number of participants needing mechanical ventilation over total number of participants per arm. | 72 hours | |
Secondary | Number of participants with supplemental oxygen requirements | Number of participants with supplemental oxygen requirements. | 72 hours | |
Secondary | Mean oxyhemoglobin saturation | Mean oxyhemoglobin saturation (percentage) measured over a 24-hour period. | At 24, 48 and 72 hours | |
Secondary | Mean Nocturnal Oxyhemoglobin Saturation | Mean oxyhemoglobin saturation (percentage) measured over an 8-hour period (between 10pm and 6am). | Measured between 10pm and 6am daily, up to 72 hours | |
Secondary | Heart Rate | Heart Rate (beats per minute) on Routine Vital Sign Assessment. | At 10, 24, 48 and 72 hours | |
Secondary | Respiratory Rate | Respiratory Rate (cycles per minute) on Routine Vital Sign Assessment. | At 10, 24, 48 and 72 hours | |
Secondary | Percentage of time in the assigned position | Percentage of time participants stay in the assigned position will be used to determine adherence. | 72 hours |
Status | Clinical Trial | Phase | |
---|---|---|---|
Terminated |
NCT04558125 -
Low-Dose Tenecteplase in Covid-19 Diagnosed With Pulmonary Embolism
|
Phase 4 | |
Recruiting |
NCT04410510 -
P2Et Extract in the Symptomatic Treatment of Subjects With COVID-19
|
Phase 2/Phase 3 | |
Active, not recruiting |
NCT04420676 -
Synbiotic Therapy of Gastrointestinal Symptoms During Covid-19 Infection
|
N/A | |
Completed |
NCT04419025 -
Efficacy of N-Acetylcysteine (NAC) in Preventing COVID-19 From Progressing to Severe Disease
|
Phase 2 | |
Completed |
NCT04395911 -
Safety and Efficacy of SCD in AKI or ARDS Patients Associated With COVID-19 Infections
|
N/A | |
Completed |
NCT04425317 -
Detection of SARS-CoV-2 in Follicular Fluid and Cumulus-oocyte-complexes in COVID-19 Patients
|
N/A | |
Withdrawn |
NCT04456426 -
Characteristics of Patients With COVID-19 in Meta State, Colombia
|
||
Completed |
NCT04526769 -
Detecting SARS-CoV-2 in Tears
|
||
Completed |
NCT04425720 -
Use of Remote Monitoring for COVID-19 Patient
|
N/A | |
Suspended |
NCT04385771 -
Cytokine Adsorption in Patients With Severe COVID-19 Pneumonia Requiring Extracorporeal Membrane Oxygenation
|
N/A | |
Completed |
NCT04419610 -
RAS and Coagulopathy in COVID19
|
Early Phase 1 | |
Completed |
NCT04546581 -
Inpatient Treatment of COVID-19 With Anti-Coronavirus Immunoglobulin (ITAC)
|
Phase 3 | |
Completed |
NCT04435327 -
Lung Damage Caused by SARS-CoV-2 Pneumonia (COVID-19)
|
||
Terminated |
NCT04530448 -
Coronavirus Induced Acute Kidney Injury: Prevention Using Urine Alkalinization
|
Phase 4 | |
Not yet recruiting |
NCT04524156 -
COVID-19 : Transcutaneous pO2 and pCO2 as Predictive Factors for Acute Respiratory Destress Syndrome in Patients Affected With SARS-Cov-2
|
N/A | |
Completed |
NCT04441710 -
Caregiver Serological Monitoring Extended Secondarily to Patients With the SARS-CoV-2 Coronavirus
|
||
Completed |
NCT04357834 -
WAVE. Wearable-based COVID-19 Markers for Prediction of Clinical Trajectories
|
||
Not yet recruiting |
NCT04392427 -
New Antiviral Drugs for Treatment of COVID-19
|
Phase 3 | |
Terminated |
NCT04614025 -
Open-label Multicenter Study to Evaluate the Efficacy of PLX-PAD for the Treatment of COVID-19
|
Phase 2 | |
Completed |
NCT04402957 -
LSALT Peptide vs. Placebo to Prevent ARDS and Acute Kidney Injury in Patients Infected With SARS-CoV-2 (COVID-19)
|
Phase 2 |