Clinical Trials Logo

Clinical Trial Summary

The COVID-19 pneumonia has grown to be a global public health emergency since patients were first detected in Wuhan, China, in December 2019, which spread quickly to worldwide and presented a serious threat to public health. It is mainly characterized by fever, dry cough, shortness of breath and breathing difficulties. Some patients may develop into rapid and deadly respiratory system injury with overwhelming inflammation in the lung. Currently, no specific drugs or vaccines are available to cure the patients with COVID-19 pneumonia. Hence, there is a large unmet need for a safe and effective treatment for COVID-19 pneumonia patients, especially the critically ill cases. The significant clinical outcome and well tolerance was observed by the adoptive transfer of allogenic MSCs. We proposed that the adoptive transfer therapy of MSCs might be an ideal choice to be used. We expect to provide new options for the treatment of critically ill COVID-19 pneumonia patients and contribute to improving the quality of life of critically ill patients.


Clinical Trial Description

Since December 2019, novel coronavirus disease 2019 (COVID-19) in Wuhan has been fierce and spread rapidly. As of 24:00 on March 4, 2020, China has reported a total of 80567 confirmed cases, 5952 existing critically ill cases, and 3016 dead cases. The COVID-19 pneumonia has grown to be a global public health emergency since patients were first detected in Wuhan, China, in December 2019, which spread quickly to 26 countries worldwide and presented a serious threat to public health. It is mainly characterized by fever, dry cough, shortness of breath and breathing difficulties. Some patients may develop into rapid and deadly respiratory system injury with overwhelming inflammation in the lung. Currently, no specific drugs or vaccines are available to cure the patients with COVID-19 infection. Hence, there is a large unmet need for a safe and effective treatment for COVID-19 infected patients, especially the critically ill cases.

Recently, some clinical researches about the COVID-19 published in The Lancet and The New England Journal of Medicine suggested that massive inflammatory cell infiltration and inflammatory cytokines secretion were found in patients' lungs, alveolar epithelial cells and capillary endothelial cells were damaged, causing acute lung injury. Several reports demonstrated that the first step of the HCoV-19 pathogenesis is that the virus specifically recognizes the angiotensin I converting enzyme 2 receptor (ACE2) by its spike Protein. This receptor is abundant in lung and small intestinal tissues, but is also highly expressed in vascular endothelial cells and smooth muscle cells in almost all organs, including the nervous system and skeletal muscle. The main organ injured by the HCoV-19 is the lung. In fact, HCoV-19 can also involve the nervous system, digestive system, urinary system, blood system and other systems. Therefore, when the initial symptom is discomfort of other systems in the early stage, it is often easy to be misdiagnosed and delay treatment. Moreover, the HCoV-19 is a noncellular form consisting of RNA and protein, which cannot be copied independently. It needs to bind to cell surface receptors to enter the cell to complete the replication, and then be released again. Therefore, once the HCoV-19 enters the blood circulation, it can easily spread to all systems throughout the body, which may be the pathological mechanism that the HCoV-19 directly or indirectly causes neurological symptoms.

It seems that the key to cure the COVID-19 pneumonia is to inhibit the inflammatory response, resulting to reduce the damage of alveolar epithelial cells and endothelial cells and repair the function of the lung. MSCs, owing to their powerful immunomodulatory ability, may have beneficial effects on preventing or attenuating the cytokine storm.

Mesenchymal stem cells (MSCs) are widely used in basic research and clinical application. They are proved to migrate to damaged tissues, exert antiinflammatory and immunoregulatory functions, promote the regeneration of damaged tissues and inhibit tissue fibrosis. MSCs play a positive role mainly in two ways, namely immunomodulatory effects and differentiation abilities. MSCs can secrete many types of cytokines by paracrine secretion or make direct interactions with immune cells, leading to immunomodulation. Studies have shown that MSCs can significantly reduce acute lung injury in mice caused by H9N2 and H5N1 viruses by reducing the levels of proinflammatory cytokines and the recruitment of inflammatory cells into the lungs. Compared with MSCs from other sources, human umbilical cord-derived MSCs (UC-MSCs) have been widely applied to various diseases due to their convenient collection, no ethical controversy, low immunogenicity, and rapid proliferation rate.

Here we conducted an MSC transplantation pilot study to explore their therapeutic potential for COVID-19 pneumonia patients. To explore the effective treatment of COVID-19 pneumonia for the current prevention and control of novel coronavirus pneumonia to find a key and effective clinical treatment means, to fight against the epidemic. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04339660
Study type Interventional
Source Puren Hospital Affiliated to Wuhan University of Science and Technology
Contact Yan Liu, MD
Phone +8613387517458
Email 447822853@qq.com
Status Recruiting
Phase Phase 1/Phase 2
Start date February 1, 2020
Completion date June 30, 2020

See also
  Status Clinical Trial Phase
Withdrawn NCT06065033 - Exercise Interventions in Post-acute Sequelae of Covid-19 N/A
Completed NCT06267534 - Mindfulness-based Mobile Applications Program N/A
Completed NCT05047601 - A Study of a Potential Oral Treatment to Prevent COVID-19 in Adults Who Are Exposed to Household Member(s) With a Confirmed Symptomatic COVID-19 Infection Phase 2/Phase 3
Recruiting NCT05323760 - Functional Capacity in Patients Post Mild COVID-19 N/A
Recruiting NCT04481633 - Efficacy of Pre-exposure Treatment With Hydroxy-Chloroquine on the Risk and Severity of COVID-19 Infection N/A
Completed NCT04612972 - Efficacy, Safety and Immunogenicity of Inactivated SARS-CoV-2 Vaccines (Vero Cell) to Prevent COVID-19 in Healthy Adult Population In Peru Healthy Adult Population In Peru Phase 3
Completed NCT04537949 - A Trial Investigating the Safety and Effects of One BNT162 Vaccine Against COVID-19 in Healthy Adults Phase 1/Phase 2
Recruiting NCT05494424 - Cognitive Rehabilitation in Post-COVID-19 Condition N/A
Active, not recruiting NCT06039449 - A Study to Investigate the Prevention of COVID-19 withVYD222 in Adults With Immune Compromise and in Participants Aged 12 Years or Older Who Are at Risk of Exposure to SARS-CoV-2 Phase 3
Enrolling by invitation NCT05589376 - You and Me Healthy
Completed NCT05158816 - Extracorporal Membrane Oxygenation for Critically Ill Patients With COVID-19
Recruiting NCT04341506 - Non-contact ECG Sensor System for COVID19
Completed NCT04384445 - Zofin (Organicell Flow) for Patients With COVID-19 Phase 1/Phase 2
Completed NCT04512079 - FREEDOM COVID-19 Anticoagulation Strategy Phase 4
Completed NCT05975060 - A Study to Evaluate the Safety and Immunogenicity of an (Omicron Subvariant) COVID-19 Vaccine Booster Dose in Previously Vaccinated Participants and Unvaccinated Participants. Phase 2/Phase 3
Active, not recruiting NCT05542862 - Booster Study of SpikoGen COVID-19 Vaccine Phase 3
Terminated NCT05487040 - A Study to Measure the Amount of Study Medicine in Blood in Adult Participants With COVID-19 and Severe Kidney Disease Phase 1
Withdrawn NCT05621967 - Phonation Therapy to Improve Symptoms and Lung Physiology in Patients Referred for Pulmonary Rehabilitation N/A
Terminated NCT04498273 - COVID-19 Positive Outpatient Thrombosis Prevention in Adults Aged 40-80 Phase 3
Active, not recruiting NCT06033560 - The Effect of Non-invasive Respiratory Support on Outcome and Its Risks in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2)-Related Hypoxemic Respiratory Failure