There are about 6461 clinical studies being (or have been) conducted in Russian Federation. The country of the clinical trial is determined by the location of where the clinical research is being studied. Most studies are often held in multiple locations & countries.
Autologous MMSCs will be isolated from oral mucosa biopsy sample and expanded in vitro.Tissue engineered construction will be created using synthetic tricalcium phosphate and autologous MMSCs. Patients will undergo sinus lift procedure with implantation of created tissue-engineered construction. This is a single arm study with no control. All patients receive cell therapy.
Subjects will undergo peripheral blood stem cell mobilisation and collection with subsequent high-dose chemotherapy. After finalization of high-dose chemotherapy subjects will receive bone marrow derived allogeneic multipotent mesenchymal stromal cells intravenous infusion two hours prior to autologous peripheral blood cells infusion. This is a single arm study with no control. All patients receive cell therapy.
Autologous adipose-derived regenerative cells (ADRC) extracted using Celution 800/CRS System (Cytori Therapeutics Inc) from a portion of the fat harvested from the patient's front abdominal wall. ADRC will be administered one-time into subtenon space of patient's eyeball. This is a single arm study with no control. All patients receive cell therapy.
Autologous adipose-derived regenerative cells (ADRC) extracted using Celution 800/CRS System (Cytori Therapeutics Inc)from a portion of the fat harvested from the patient's front abdominal wall. ADRC will be administered one-time endoscopically into submucosal layer of urethra under eye control into the stricture site after mechanical dilation. This is a single arm study with no control. All patients receive cell therapy.
The purpose of this study is to achieving a six-month progression free survival (PFS) of patients receiving autologous dendritic cell vaccine (ADKV) loaded with allogeneic tumor lysate expression of cancer-testis antigens (CTA) in patients with soft tissue sarcomas
Autologous washed and homogenized fat micrograft harvested from the patient's front abdominal wall enriched with adipose-derived regenerative cells (ADRC) derived by enzyme-treatment of a portion of the harvested fat. Fat tissue micrograft mixed with ADRC will be administered one-time endoscopically into submucosal layer of urethra under eye control. This is a single arm study with no control. All patients receive cell therapy.
The purpose of this study is to collect long-term safety and efficacy data for participants treated with ibrutinib and to provide ongoing access to ibrutinib for participants who are currently enrolled in ibrutinib studies that have been completed according to the parent protocol, are actively receiving treatment with ibrutinib, and who continue to benefit from ibrutinib treatment.
Trial Hypothesis: Acute, progressing lethal neurooncological process can be transferred into chronic and non-lethal, the survival rates and life quality can be improved by of control of tumor cells (TCs) quantity and targeted regulation of effector functions of tumor stem cells (TSCs). Brief Description: The first line therapy of brain metastases of lung cancer (BMLC) involves allogeneic haploidentical hematopoietic stem cells (HSCs), dendritic vaccine (DV) and cytotoxic lymphocytes (CTLs). TCs and TSCs are isolated from BMLC sample. Dendritic cells are isolated from peripheral blood mononuclear cells and cultured. Tumor sample provides tumor specific antigens to prepare DV. CTLs are obtained from peripheral blood after DV administrations. HSCs are harvested from closely related donor after granulocyte-colony-stimulating factor (G-CSF) administration. Allogeneic HSCs are administered intrathecally 5 times every 2 weeks, at day 1, 14, 28, 42, 56. DV is given 3 times every 2 weeks (day 14, 28, 42) subcutaneously in four points. CTLs are administered every 2 weeks for 3 months, then 3 times every 1 month intrathecally. Six months after the therapy completion, the efficiency is evaluated and the cohort demonstrating efficiency continues the therapy, while cohort demonstrating no efficiency is transferred to active comparator arm. Second line therapy involves DV with recombinant proteins, CTLs and autologous HSC with modified proteome. Autologous HSCs are mobilized by G-CSF. Carcinogenesis-free intracellular pathways of signal transduction able to respond to targeted regulation of therapeutic cell systems with specific properties, are detected in TSCs using complete transcriptome profiling of gene expression, proteome mapping and profiling of proteins, bioinformation and mathematical analysis and mathematical modeling of protein profiles. To find key oncospecific proteins in TSCs and TCs, the targets for TSCs regulation are detected, as well as protein ligands able to regulate reproductive and proliferative properties of TSCs. Using these data of TCs and TSCs proteins, the cell preparations to initiate adoptive immune response are prepared: DV loaded with recombinant proteins analogous to key tumor antigens, CTLs and autologous proteome-based HSCs. Autologous proteome-modified HSCs, DV and CTLs are administered as in the first line therapy.
Trial Hypothesis: Acute, progressing lethal neurooncological process can be transferred into chronic and non-lethal, the survival rates and life quality can be improved by of control of tumor cells (TCs) quantity and targeted regulation of effector functions of tumor stem cells (TSCs). Brief Description: The first line therapy of brain metastases of breast cancer (BMBC) involves allogeneic haploidentical hematopoietic stem cells (HSCs), dendritic vaccine (DV) and cytotoxic lymphocytes (CTLs). TCs and TSCs are isolated from BMBC sample. Dendritic cells are isolated from peripheral blood mononuclear cells and cultured. Tumor sample provides tumor specific antigens to prepare DV. CTLs are obtained from peripheral blood after DV administrations. HSCs are harvested from closely related donor after granulocyte-colony-stimulating factor (G-CSF) administration. Allogeneic HSCs are administered intrathecally 5 times every 2 weeks, at day 1, 14, 28, 42, 56. DV is given 3 times every 2 weeks (day 14, 28, 42) subcutaneously in four points. CTLs are administered every 2 weeks for 3 months, then 3 times every 1 month intrathecally. Six months after the therapy completion, the efficiency is evaluated and the cohort demonstrating efficiency continues the therapy, while cohort demonstrating no efficiency is transferred to active comparator arm. Second line therapy involves DV with recombinant proteins, CTLs and autologous HSC with modified proteome. Autologous HSCs are mobilized by G-CSF. Carcinogenesis-free intracellular pathways of signal transduction able to respond to targeted regulation of therapeutic cell systems with specific properties, are detected in TSCs using complete transcriptome profiling of gene expression, proteome mapping and profiling of proteins, bioinformation and mathematical analysis and mathematical modeling of protein profiles. To find key oncospecific proteins in TSCs and TCs, the targets for TSCs regulation are detected, as well as protein ligands able to regulate reproductive and proliferative properties of TSCs. Using these data of TCs and TSCs proteins, the cell preparations to initiate adoptive immune response are prepared: DV loaded with recombinant proteins analogous to key tumor antigens, CTLs and autologous proteome-based HSCs. Autologous HSCs, DV and CTLs are administered as in the first line therapy.
Trial Hypothesis: Acute, progressing lethal neurooncological process can be transferred into chronic and non-lethal, the survival rates and life quality can be improved by of control of tumor cells (TCs) quantity and targeted regulation of effector functions of tumor stem cells (TSCs). Brief Description: The first line therapy of glioblastoma multiforme (GBM) involves allogeneic haploidentical hematopoietic stem cells (HSCs), dendritic vaccine (DV) and cytotoxic lymphocytes (CTLs). TCs and TSCs are isolated from GBM sample. Dendritic cells are isolated from peripheral blood mononuclear cells and cultured. Tumor sample provides tumor specific antigens to prepare DV. CTLs are obtained from peripheral blood after DV administrations. HSCs are harvested from closely related donor after granulocyte-colony-stimulating factor (G-CSF) administration. Allogeneic HSCs are administered intrathecally 5 times every 2 weeks, at day 1, 14, 28, 42, 56. DV is given 3 times every 2 weeks (day 14, 28, 42) subcutaneously in four points. CTLs are administered every 2 weeks for 3 months, then 3 times every 1 month intrathecally. Six months after the therapy completion, the efficiency is evaluated and the cohort demonstrating efficiency continues the therapy, while cohort demonstrating no efficiency is transferred to active comparator arm. Second line therapy involves DV with recombinant proteins, CTLs and autologous HSC with modified proteome. Autologous HSCs are mobilized by G-CSF. Carcinogenesis-free intracellular pathways of signal transduction able to respond to targeted regulation of therapeutic cell systems with specific properties, are detected in TSCs using complete transcriptome profiling of gene expression, proteome mapping and profiling of proteins, bioinformation and mathematical analysis and mathematical modeling of protein profiles. To find key oncospecific proteins in TSCs and TCs, the targets for TSCs regulation are detected, as well as protein ligands able to regulate reproductive and proliferative properties of TSCs. Using these data of TCs and TSCs proteins, the cell preparations to initiate adoptive immune response are prepared: DV loaded with recombinant proteins analogous to key tumor antigens, CTLs and autologous proteome-modified HSCs. Autologous proteome-modified HSCs, DV and CTLs are administered as in the first line therapy.