View clinical trials related to Confusion.
Filter by:Delirium is defined as an acute change in mental status characterized by fluctuating disturbances of consciousness, attention, cognition, and perception, usually secondary to acute injuries such as trauma or infections. Delirium is more frequent in older adults, and is associated with important poor clinical outcomes including increased mortality, functional deterioration, and higher expenditures for healthcare systems. Although it is not the only one responsible, the inflammatory response plays a key role in the development of delirium. From the first descriptions of the condition 2500 years ago, it is known that patients who present with inflammatory injuries such as trauma (pe. hip fracture) or infections (sepsis), frequently develop delirium. Microglia, are an inflammatory cell with phagocytic capacity, that inhabit the nervous system and have a critical role in the regulation of the inflammatory response in the brain. It is known that microglia have receptors that respond to systemic inflammatory mediators by generating new inflammatory mediators that exert their effect on other glial cells and neurons in the central nervous system, affecting their function. Mouse models have shown that depleting the brain of microglia prevents cognitive decline after a traumatic bone injury, suggesting a role of these cells in the development of delirium. Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that participates in DNA repair, and in the regulation of the expression of inflammatory mediators by immune cell. In vitro experiments have shown that PARP-1 enhances the microglial response to inflammation, and data from mice exposed to the bacterial component "lipo-poly-saccharide (LPS)", a classical model of delirium, showed that pharmacological inhibition of PARP-1 prevents cognitive decline secondary to that injury. Interestingly, nicotinamide, a vitamin widely available in the market, with a well-known safety profile in humans, is a well-recognized inhibitor of PARP-1. The role of PARP-1 nor nicotinamide in delirium has never been explored. Considering that, 1) there is evidence showing that PARP-1 may act as an enhancer of the inflammatory response of microglia and 2) the protective effect against cognitive impairment produced by pharmacological inhibition of PARP-1 in a mice model of delirium, we propose as hypothesis that PARP-1 participates in delirium pathogenesis by enhancing microglial activation in response to systemic inflammation. To address this hypothesis in patients, we propose to determine in a randomized clinical trial whether nicotinamide, a pharmacological inhibitor of PARP-1, is more effective than placebo for the prevention of delirium in older adults with requirement of oxygen (non-invasive) and suspected coronavirus disease (COVID-19) under study. The results of this research will contribute significantly in the field of delirium, improving the knowledge of its physiopathology, as well with the development of of new alternatives for its prevention in clinical practice.
The main aim of this study is to determine the effects of short-term treatment with hesperidin on COVID-19 symptoms in comparison with a placebo. Treatment effects will be observed through a symptoms diary that will be completed by participants throughout the study and by taking the oral temperature daily.
Emergence agitation is a postanesthetic phenomenon that develops in the early phase of general anesthesia recovery, and is characterized by agitation, confusion, disorientation, and possible violent behavior. Though agitation is observed more frequently in pediatric patients, the incidence in adults has been reported at 4.7% or 21.3%. Emergence agitation can lead to serious consequences such as self-extubation, removal of catheters, hemorrhage, and even severe injuries from falling out of the bed. Furthermore, it may increase the demand on human resources and cause medical staff injuries.
Respiratory end-tidal gas control is a fundamental of anesthetic management. The range of end-tidal (ET) O2 and CO2 during the conduct of anesthesia is far outside that found in the awake state. Recent work has indicated that alterations in end-tidal gases may influence the incidence of postoperative delirium (POD). This study will examine the feasibility of tight end-tidal gas control during anesthesia to decrease the incidence of POD.
To improve the safety of diagnosis and therapy for a set of conditions and undifferentiated symptoms for hospitalized patients, the investigators will employ a set of methods and tools from the disciplines of systems engineering, human factors, quality improvement,and data analytics to thoroughly analyze the problem, design and develop potential solutions that leverage existing current technological infrastructure, and implement and evaluate the final interventions. The investigators will engage the interdisciplinary care team and patient (or their caregivers) to ensure treatment trajectories match the anticipated course for working diagnoses (or symptoms), and whether they are in line with patient and clinician expectations. The investigators will use an Interrupted time series (ITS) design to assess impact on diagnostic errors that lead to patient harm. The investigators will perform quantitative and qualitative evaluations using implementation science principles to understand if the interventions worked, and why or why not.
The purpose of this study is to investigate whether markers of brain structure and function from MRI are associated with different levels of spatial orientation and gait parameters in people with mild cognitive impairment or dementia due to Alzheimer's disease when walking through a real world environment.
Type 2 diabetes is associated with diabetic cognopathy, the prevalence of Alzheimer's Disease(AD) in T2DM patients is 1.5 to 2.5 times higher than the general population. Cognitive impairment seriously affects the health and quality of life of the elderly. Prevention and treatment measures for cognitive decline in persons with T2DM has not been well studied. Sodium-glucose transporter-2 (SGLT-2) inhibitors, which lower serum glucose by inhibiting SGLT2-mediated glucose reabsorption in renal proximal tubules, could be neuroprotective. It was recently reported that the SGLT-2 inhibitor improved cognitive function and ameliorated oxidative stress via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in mice or HFD-induced obese rats, that means SGLT-2 inhibitor may provide neuroprotection in the diabetic brain. Hence, Invokana (Canagliflozin) might act as a potent dual inhibitor of AChE and SGLT2. Since the development of diabetes is associated with AD, the design of new AChE inhibitors based on antidiabetic drug scaffolds would be particularly beneficial. Moreover, the present computational study reveals that Invokana (Canagliflozin) is expected to form the basis of a future dual therapy against diabetes associated neurological disorders. The overall goal of this study is to explore the effects of SGLT2 inhibitor on the cognitive function in patients with type 2 diabetes mellitus and make further contribution to the improvement of cognitive function.
Anesthesia is a drug induced, reversible, comatose state that facilitates surgery and it is widely assumed that cognition returns to baseline after anesthetics have been eliminated. However, many patients have persistent memory impairment for weeks to months after surgery. Cardiac surgery appears to carry the highest risk of postoperative cognitive dysfunction (POCD). These cognitive deficits are associated with increased mortality, prolonged hospital stay and loss of independence. The investigators propose to investigate the role of Dexmedetomidine (DEX) in preventing long-term POCD after cardiac surgery and enhancing early postoperative recovery. It is anticipated that DEX will be the first effective preventative therapy for POCD, improve patient outcomes, and reduce length of stay and healthcare costs.
This prospective observational multicenter study is intended to investigate the impact of sedatives on the decision capacity of intensive care units patients.
This study attempts to validate the Greek version of the CAM Diagnostic Algorithm and Nu-DESC in patients undergoing surgery under general anesthesia.