Clinical Trials Logo

Clinical Trial Summary

Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by obstruction of the pulmonary vasculature by residual organized thrombi, leading to increased pulmonary vascular resistance (PVR), progressive pulmonary hypertension, and right heart failure. Medical therapy and balloon angioplasty (BPA) are effective treatment alternatives in lowering pulmonary pressures and increasing pulmonary flow. The aim of this study is to assess the hemodynamic effects of BPA or medical therapy on the pressure-flow relationship in the pulmonary vasculature and the pulmonary vascular compliance.


Clinical Trial Description

Chronic thromboembolic pulmonary hypertension [CTEPH] is a rare condition with a significant risk of morbidity and mortality. The primary cause of CTEPH is thrombotic lesions, which did not resolve after acute pulmonary embolism. This causes increased pulmonary vascular resistance [PVR], leading to secondary remodeling of pulmonary arteries causing pulmonary hypertension and ultimately progressive right heart failure. The treatment of choice is surgical pulmonary endarterectomy [PEA], however up to 40% cases are not treated surgically, due to operability, anatomic location of the lesions, patient choice and comorbidities significantly increasing procedural risk. A new alternative procedure, balloon pulmonary angioplasty [BPA] has been proposed for patients with inoperable CTEPH or persistent pulmonary hypertension after pulmonary endarterectomy (PEA) and is currently characterized with good outcome in functional capacity, hemodynamic parameters, biomarkers, and health-related quality of life. Exercise stress tests of the pulmonary circulation are used in workup and diagnosis of pulmonary hypertension as a hemodynamic abnormality. The approach has allowed identification of patients with normal or marginally increased mPAP at rest but with symptomatic increases in mPAP at exercise, related to either increased resistance or increased left atrial pressure. Although this differential diagnosis is of obvious therapeutic relevance, guidelines about exercise stress studies of the pulmonary circulation have not been developed until now for lack of robust evidence allowing for a consensus on clearly defined cutoff values. Neither the pathophysiology of the exercise limitation nor the underlying mechanisms of the BPA - induced improvement were studied before. Therefore the aim of this study is to assess the hemodynamic effects of BPA treatment on the pressure-flow relationship in the pulmonary vasculature and the pulmonary vascular compliance. Furthermore, the investigators will explore possible differences in treatment effect across centers. Especially explore the timing of medical therapy vs balloon angioplasty. . ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04052243
Study type Interventional
Source Aarhus University Hospital
Contact Mads J Andersen, MD, PhD
Phone +45784500000
Email madsae@rm.dk
Status Recruiting
Phase N/A
Start date January 1, 2021
Completion date June 30, 2024

See also
  Status Clinical Trial Phase
Active, not recruiting NCT06092424 - High Altitude (HA) Residents With Pulmonary Vascular Diseseases (PVD), Pulmonary Artery Pressure (PAP) Assessed at HA (2840m) vs Sea Level (LA) N/A
Active, not recruiting NCT06003244 - High Altitude (HA) Residents With Pulmonary Vascular Diseases (PVD), 6 Minute Walk Distance (6MWD) Assessed at 2840m (HA) With and Without Supplemental Oxygen Therapy (SOT) N/A
Active, not recruiting NCT06072417 - HA Residents With PVD, SDB Assessed at HA (2840m) vs LA (Sea Level) N/A
Terminated NCT01953965 - Look at Way the Heart Functions in People With Pulmonary Hypertension (PH) Who Have Near Normal Right Ventricle (RV) Function and People With Pulmonary Hypertension Who Have Impaired RV Function. Using Imaging Studies PET Scan and Cardiac MRI. Phase 2
Recruiting NCT02061787 - the Application of Cardiopulmonary Exercise Testing in Assessment Outcome of Patients With Pulmonary Hypertension
Not yet recruiting NCT03102294 - Inspiratory Muscle Training in Chronic Thromboembolic Pulmonary Hypertension N/A
Recruiting NCT04071327 - Pulmonary Hypertension Association Registry
Completed NCT00313222 - Bosentan Effects in Inoperable Forms of Chronic Thromboembolic Pulmonary Hypertension Phase 3
Recruiting NCT05311072 - Change-a Multi-center Chronic Thromboembolic Pulmonary Hypertension (CTEPH) Database in China
Recruiting NCT05340023 - Proteomic Pattern Associated With the Diagnosis of Chronic Thromboembolic Pulmonary Hypertension
Enrolling by invitation NCT05568927 - Validation of SEARCH, a Novel Hierarchical Algorithm to Define Long-term Outcomes After Pulmonary Embolism
Completed NCT03786367 - Dyspnea in Chronic Thromboembolic Pulmonary Hypertension
Recruiting NCT04081012 - N-acetyl Cysteine in Post-reperfusion Pulmonary Injury in Chronic Thromboembolic Pulmonary Hypertension. N/A
Not yet recruiting NCT06384534 - Exercise Performance on Ambient Air vs. Low-Flow Oxygen Therapy in Pulmonary Vascular Disease (PVD) N/A
Withdrawn NCT05693779 - Exercise Therapy After Pulmonary Thromboendarterectomy or Balloon Pulmonary Angioplasty for Chronic Thromboembolic Pulmonary Hypertension N/A
Not yet recruiting NCT02426203 - 3D Echocardiographic Assessment of RV Function in Patients Undergoing Pulmonary Endarterectomy N/A
Completed NCT02094001 - Pilot Study to Evaluate Right Ventricular Function With Riociguat in CTEPH Phase 2
Enrolling by invitation NCT03388476 - Endtidal Carbon Dioxide for Earlier Detection of Pulmonary Hypertension
Recruiting NCT04206852 - Safety and Efficacy of Balloon Pulmonary Angioplasty in China
Completed NCT02111980 - RF Surgical Sponge-Detecting System on the Function of Pacemakers and Implantable Cardioverter Defibrillators N/A