View clinical trials related to Chromosome Abnormality.
Filter by:The "North Carolina Clinical Genomic Evaluation by Next-gen Exome Sequencing, 2 (NCGENES 2)" study is part of a larger consortium project investigating the clinical utility, or net benefit of an intervention on patient and family well-being as well as diagnostic efficacy, management planning, and medical outcomes. A clinical trial will be implemented to compare (1) first-line exome sequencing to usual care and (2) participant pre-visit preparation to no pre-visit preparation. The study will use a randomized controlled design, with 2x2 factorial design, coupled with patient-reported outcomes and comprehensive clinical data collection addressing key outcomes, to determine the net impact of diagnostic results and secondary findings.
Abnormal chromosome number, or aneuploidy, is common in human embryos. It is responsible for more than half of all miscarriages, and it is the leading cause of congenital birth defects. Besides, it has been described that aneuploidy may also affect embryo implantation. Therefore, selecting embryos that have the best chance of implanting and growing into a healthy baby is one of the most important steps in the field of assisted reproduction. Recent advances in genetic technologies, such as Next-Generation Sequencing (NGS), have allowed aneuploidy to be detected with greater sensitivity. The application of this technique to trophectoderm biopsies, taken from embryos before transfer to the uterus, has provided insight into the clinical impact of chromosomal status. This process of screening embryos to make sure they have the right number of chromosomes and to look for any structural abnormalities in the chromosomes is called Preimplantation Genetic Testing for Aneuploidy (PGT-A). It requires specific equipment and trained personnel that will add costs and risks, so non-invasive techniques are sought as an alternative. These non-invasive procedures have been explored by some groups analyzing the spent culture medium where the embryo is cultured up to the time of transfer or freezing. In daily routine, this media is discarded after finishing the embryo culture, but it has been reported that contains traces of embryonic cell-free DNA (cfDNA) that can represent the genetic load of the embryo. However, at the moment there is a high variability in results across studies, with a percentage of concordant results between the media and the trophectoderm biopsy ranging from 3.5 to 85.7%. Thus, the main objective of this project is to validate a new non-invasive method for PGT-A (niPGT-A), based on improved collection and analysis of the culture media to achieve higher rates of sensitivity and specificity and to decrease the effect of some intrinsic difficulties such as low embryonic cfDNA input, mosaicism and maternal contamination.
Lite Run is a new assistive device that may have FDA listing as a Class I device by mid 2017 based on clinical testing of adults, independent agency testing and in-house evaluations. This will be a combined study with multiple purposes with respect to the evaluation of its use with the post-operative pediatric population. A first purpose is to verify safety and feasibility of the device on pediatric patients. A second purpose is to statistically test the effectiveness of Lite Run to decrease physical burden on the therapist during post-operative gait training for children and adolescents with cerebral palsy as compared to current methods of body weight-supported gait training. A third purpose is to measure and qualitatively evaluate the effectiveness of the device on patient outcomes and improving patient and therapist satisfaction.
The risk of abnormal chromosome and structure is much higher in twins than in singletons, and traditional early pregnancy screening strategy for single pregnancy is not suitable for twins. Based on our management experience of fetal medicine at twin pregnancy, and multi-center cooperation, the study will carry out the following clinical studies: 1. to explore a suitable, early, noninvasive and accurate prenatal screening strategy for twin pregnancy. 2. fetal chromosomal abnormalities
In order to distinguish between clonal instability driven by imatinib in CML and actual changes with secondary clones induced by imatinib we would like to investigate the karyotype of non-CML patients treated with imatinib such as GIST patients.