Clinical Trials Logo

Clinical Trial Summary

The objective of this research study is to find the efficacy of trans-spinal electrical stimulation, a non-invasive neurostimulation method to modulate the functions of spinal cord neurocircuits, on improving upper-extremity functions such as reaching and grasping in individuals suffering with traumatic brain injury (TBI) or cervical spinal cord injury (SCI); and to find the physiological changes in the neuromuscular systems after this new intervention with high-resolution electrophysiology and biomedical imaging.


Clinical Trial Description

Spinal cord is composed of specialized neural networks, capable of executing different functions. Although the command for upper-limb functions such as reaching and grasping is delivered from the brain, the cervical spinal cord circuits work as an important hub for not only executing the task, but also amplify the command and maintain the dynamics with proper feedback mechanisms with it's reflex circuitry. A simple reaching and grasping function requires spatiotemporal coordination of upper-limb joints and the neuromuscular systems, their adaptation and control in gravity. For human, these physiological activities are well choreographed by sets of neural networks. In combination with afferent sensory inputs, these network circuits work with the motor periphery to generate a series of motor acts during each task. Normally, the activity of these spinal networks are regulated supraspinally and by peripheral sensory inputs. In case of the loss of supraspinal inputs, resultant of a traumatic brain injury (TBI) or cervical spinal cord injury (SCI), upper-limb motor tasks maybe enabled by directly activating these specialized cervical cord networks via external stimuli. Recent studies have demonstrated that neuromodulation via spinal cord stimulation can effectively restore upper-limb motor function in patients with chronic neurological injuries. Traumatic injuries to the central nervous system (CNS) such as TBI and SCI are devastating events leaving patients with impairment of motor, sensory and autonomic functions. Mainstay for the treatment is still limited to rehabilitation by physical therapy and training. In few patients, however, neuroplasticity and repair mechanisms are considered to contribute to recovery of paresis in the acute stage of the injury and stops in the chronic stage. But, three recent groundbreaking pilot studies have shown that the recovery can be further amplified in the chronic stage by the novel treatment of trans-spinal electrical stimulation. However, the rehabilitation related to this recovery is not well understood, and thus it is a challenge to be convinced with the efficacy of this new therapy. A deeper understanding of the physiology in a larger trial of two different but related neurological patient groups, proposed in this study, will significantly help the researcher to prove the efficacy and understand the mechanism of trans-spinal electrical stimulation therapy for the patients. This study will further assist the researchers to design even a better therapeutic intervention for neurological impaired patients. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04183998
Study type Interventional
Source The Hong Kong Polytechnic University
Contact
Status Completed
Phase N/A
Start date May 1, 2019
Completion date January 31, 2022

See also
  Status Clinical Trial Phase
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Completed NCT04356963 - Adjunct VR Pain Management in Acute Brain Injury N/A
Completed NCT03418129 - Neuromodulatory Treatments for Pain Management in TBI N/A
Terminated NCT03698747 - Myelin Imaging in Concussed High School Football Players
Recruiting NCT05130658 - Study to Improve Ambulation in Individuals With TBI Using Virtual Reality -Based Treadmill Training N/A
Recruiting NCT04560946 - Personalized, Augmented Cognitive Training (PACT) for Service Members and Veterans With a History of TBI N/A
Completed NCT05160194 - Gaining Real-Life Skills Over the Web N/A
Recruiting NCT02059941 - Managing Severe Traumatic Brain Injury (TBI) Without Intracranial Pressure Monitoring (ICP) Monitoring Guidelines N/A
Recruiting NCT03940443 - Differences in Mortality and Morbidity in Patients Suffering a Time-critical Condition Between GEMS and HEMS
Recruiting NCT03937947 - Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study
Completed NCT04465019 - Exoskeleton Rehabilitation on TBI
Recruiting NCT04530955 - Transitioning to a Valve-Gated Intrathecal Drug Delivery System (IDDS) N/A
Recruiting NCT03899532 - Remote Ischemic Conditioning in Traumatic Brain Injury N/A
Suspended NCT04244058 - Changes in Glutamatergic Neurotransmission of Severe TBI Patients Early Phase 1
Completed NCT03307070 - Adapted Cognitive Behavioral Treatment for Depression in Patients With Moderate to Severe Traumatic Brain Injury N/A
Recruiting NCT04274777 - The Relationship Between Lipid Peroxidation Products From Traumatic Brain Injury and Secondary Coagulation Disorders
Withdrawn NCT05062148 - Fundamental and Applied Concussion Recovery Modality Research and Development: Applications for the Enhanced Recovery N/A
Withdrawn NCT04199130 - Cognitive Rehabilitation and Brain Activity of Attention-Control Impairment in TBI N/A
Withdrawn NCT03626727 - Evaluation of the Efficacy of Sodium Oxybate (Xyrem®) in Treatment of Post-traumatic Narcolepsy and Post-traumatic Hypersomnia Early Phase 1