Cerebrovascular Accident Clinical Trial
Official title:
Cortical and Spinal Correlates of Post-stroke Gait Rehabilitation
The study is a prospective interventional study to assess the changes in corticospinal excitability and spinal reflex excitability of in response to rehabilitative strategies and protocols that are commonly used during physical therapy treatment of gait disorders among post-stroke subjects. As part of this protocol, 55 individuals with chronic stroke will be assigned to either Cohort 1 or Cohort 2, and will participate in 1-18 gait training sessions. If interested, study participants can also complete both study cohorts sequentially (with at least 3-weeks duration between switching from one cohort to the second). The study examines the effects among two cohorts of post stroke patients. Cohort 1 will participate in 18 sessions of fast treadmill walking plus Functional Electrical Stimulation (FastFES) and Cohort 2 will participate in 1-3 sessions of FastFES and fast walking without FES.
Stroke is the number one cause of disability. Difficulty with walking affects most stroke survivors. Walking deficits (e.g. reduced ankle flexion during swing phase, decreased forward propulsion during terminal stance) can cause risks of falls, slow walking speed, increased effort of walking, and difficulties with activities of daily living. Restoration of walking ability can improve quality of life, and is perceived as a major goal of rehabilitation by stroke survivors. Examples of interventions that are used to rehabilitate walking post-stroke are functional electrical stimulation, fast treadmill walking, and bio- feedback. While recent research has focused on comparing the effectiveness of different gait rehabilitation interventions, the neural and biomechanical mechanisms underlying different gait rehabilitation strategies are unknown. FastFES is a novel gait training intervention that combines the beneficial effects of two independent interventions: Fast treadmill walking and FES. The FastFES intervention incorporates principles of physiology, biomechanics, motor control and learning, and predictions of forward-dynamic gait simulations to improve post-stroke gait. The overall purpose of this protocol is to assess the biomechanical and neurophysiologic effects of rehabilitative strategies and protocols that are commonly used during physical therapy treatment of gait disorders post-stroke among two cohorts of people. Aim 1 of the study will assess the changes in gait biomechanics, corticospinal excitability, and walking function during 18 sessions of gait retraining, with participants in Cohort 1. Aim 2 of the study assesses the effect of parameters such as walking speed (slow, fast, variable, split-belt walking), functional electrical stimulation parameters (short-term changes induced by fast versus FastFES, stimulation intensity, number of muscles stimulated), and bio-feedback on within-session changes in gait biomechanics, walking function, and corticospinal excitability, among participants in Cohort 2. Within Cohort 1, participants will receive identical treatment throughout the 18 training sessions (i.e. FastFES training). Within Cohort 2, participants will participate in 3 training sessions of both FastFES and fast walking training, with a 3-week break between the two types of training. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05477238 -
Oxygen Consumption in Post-stroke Patients During Various Walking Activities Compared to Healthy Controls
|
N/A | |
Completed |
NCT00046293 -
ReoPro and Retavase to Treat Acute Stroke
|
Phase 2 | |
Completed |
NCT04584645 -
A Digital Flu Intervention for People With Cardiovascular Conditions
|
N/A | |
Completed |
NCT01116544 -
Treatment of Chronic Stroke With AMES + EMG Biofeedback
|
N/A | |
Withdrawn |
NCT04991038 -
Clinical Investigation to Compare Safety and Efficacy of DAISE and Stent Retrievers for Thrombectomy In Acute Ischemic Stroke Patients
|
N/A | |
Active, not recruiting |
NCT02563886 -
Electrically Assisted Movement Therapy
|
N/A | |
Recruiting |
NCT02446730 -
Efficacy and Safety of BiomatrixTM Stent and 5mg-Maintenance Dose of Prasugrel in Patients With Acute Coronary Syndrome
|
Phase 4 | |
Completed |
NCT02141932 -
Pocket-size Cardiovascular Ultrasound in Stroke
|
N/A | |
Completed |
NCT01915368 -
Determining Optimal Post-Stroke Exercise (DOSE)
|
N/A | |
Recruiting |
NCT01769326 -
Influence of Timing on Motor Learning
|
N/A | |
Recruiting |
NCT02557737 -
Botulinim Toxin Type A Injections by Different Guidance in Stroke Patients With Spasticity on Upper Extremities
|
Phase 3 | |
Terminated |
NCT01705353 -
The Role of HMGB-1 in Chronic Stroke
|
N/A | |
Completed |
NCT01423201 -
Transient Ischemic Attack (TIA) Triage and Evaluation of Stroke Risk
|
||
Completed |
NCT01656876 -
The Effects of Mirror Therapy on Upper Extremity in Stroke Patients
|
N/A | |
Completed |
NCT01182818 -
Fabry and Stroke Epidemiological Protocol (FASEP): Risk Factors In Ischemic Stroke Patients With Fabry Disease
|
N/A | |
Withdrawn |
NCT00573092 -
Analyzing Gene Regions That May Interact With the Effectiveness of High Blood Pressure Drugs
|
N/A | |
Completed |
NCT00542256 -
tDCS and Physical Therapy in Stroke
|
N/A | |
Completed |
NCT00377689 -
Evaluation of an Intervention Program Targeted at Improving Balance and Functional Skills After Stroke
|
Phase 2 | |
Recruiting |
NCT00166751 -
Sonographic Assessment of Laryngeal Elevation
|
N/A | |
Completed |
NCT00125619 -
Internally Versus Externally Guided Body Weight-Supported Treadmill Training (BWSTT) for Locomotor Recovery Post-stroke
|
N/A |