View clinical trials related to Cerebral Edema.
Filter by:This study has been added as a sub study to the Simulation Training for Emergency Department Imaging 2 study (ClinicalTrials.gov ID NCT05427838). The purpose of the study is to assess the impact of an Artificial Intelligence (AI) tool called qER 2.0 EU on the performance of readers, including general radiologists, emergency medicine clinicians, and radiographers, in interpreting non-contrast CT head scans. The study aims to evaluate the changes in accuracy, review time, and diagnostic confidence when using the AI tool. It also seeks to provide evidence on the diagnostic performance of the AI tool and its potential to improve efficiency and patient care in the context of the National Health Service (NHS). The study will use a dataset of 150 CT head scans, including both control cases and abnormal cases with specific abnormalities. The results of this study will inform larger follow-up studies in real-life Emergency Department (ED) settings.
The purpose of this study is to test the safety and effectiveness of a single dose of fingolimod in patients with primary spontaneous intracerebral hemorrhage (ICH).
Patients who experience lung injury are often placed on a ventilator to help them heal; however, if the ventilator volume settings are too high, it can cause additional lung injury. It is proven that using lower ventilator volume settings improves outcomes. In patients with acute brain injury, it is proven that maintaining a normal partial pressure of carbon dioxide in the arterial blood improves outcomes. Mechanical ventilator settings with higher volumes and higher breathing rates are sometimes required to maintain a normal partial pressure of carbon dioxide. These 2 goals of mechanical ventilation, using lower volumes to prevent additional lung injury but maintaining a normal partial pressure of carbon dioxide, are both important for patients with acute brain injury. The investigators have designed a computerized ventilator protocol in iCentra that matches the current standard of care for mechanical ventilation of patients with acute brain injury by targeting a normal partial pressure of carbon dioxide with the lowest ventilator volume required. This is a quality improvement study with the purpose of observing and measuring the effects of implementation of a standard of care mechanical ventilation protocol for patients with acute brain injury in the iCentra electronic medical record system at Intermountain Medical Center. We hypothesize that implementation of a standardized neuro lung protective ventilation protocol will be feasible, will achieve a target normal partial pressure of carbon dioxide, will decrease tidal volumes toward the target 6 mL/kg predicted body weight, and will improve outcomes.