View clinical trials related to Carotid Artery Diseases.
Filter by:The goal of this clinical trail is to compare the differences in carotid plaque Treg cells' gene signature for activation, proliferation, and suppressive function using scRNA-seq in patients treated with IL-2 compared to control.
The PERFORMANCE III study is a prospective, multicenter single-arm, open label study to evaluate the safety and effectiveness of the Neuroguard IEP® Direct System for the treatment of carotid artery stenosis in subjects at elevated risk for carotid endarterectomy (CEA). Eligible patients greater than or equal to 20 years of age and less than or equal to 80 years of age, are those who have been diagnosed with either de-novo atherosclerotic or post CEA restenotic lesion(s) in the internal carotid arteries (ICA) or at the carotid bifurcation with greater than or equal to 50% stenosis if symptomatic or greater than or equal to 70% stenosis if asymptomatic.
The goal of this observational study is to learn more about plaque biology in asymptomatic carotid artery stenosis (ACAS) patients through imaging. The main questions it aims to answer are: - To determine the ability of 64Cu-CANF-Comb positron emission tomography (PET) to risk stratify ACAS patients for stroke event, to include transient ischemic attack or remote ipsilateral intervention. - To further understand the role of Natriuretic Peptide Receptor C (NPRC) in the evolution of carotid atherosclerosis. Participants will be asked to undergo a carotid PET-magnetic resonance imaging (MRI) examination to assess whether the carotid atherosclerosis uptake of 64Cu-CANF-Comb as measured by PET-MRI correlates with patient outcomes (stroke, transient ischemic attack, or remote ipsilateral intervention).
Cerebral hyperperfusion syndrome (CHS) was initially described as a clinical syndrome following carotid endarterectomy (CEA), but it may present in both CEA and carotid artery stenting, and is characterised by throbbing ipsilateral frontotemporal or periorbital headache, and sometimes diffuse headache, eye and face pain, vomiting, confusion, macular oedema, and visual disturbances, focal motor seizures with frequent secondary generalisation, focal neurological deficits, and intracerebral or subarachnoid haemorrhage. Knowledge of CHS among physicians is limited. Most studies report incidences of CHS of 1-3% after carotid endarterectomy. CHS is most common in patients with increases of more than 100% in perfusion compared with baseline after carotid revascularization procedures and is rare in patients with increases in perfusion less than 100% compared with baseline. The pathophysiological mechanism of CHS remains only partially understood. The chronic lowflow state induced by severe carotid disease results in a compensatory dilation of cerebral vessels distal to the stenosis, as part of the normal autoregulatory response, to maintain adequate cerebral blood flow (CBF). In this chronically dilated state, the vessels lose their ability to autoregulate vascular resistance in response to changes in blood pressure. In fact, it has been shown that this dysautoregulation is proportional to the duration and severity of chronic hypoperfusion. After revascularization and reperfusion, the impaired cerebral autoregulation could then contribute to a cascade of intracranial microcirculatory changes, as explained above, with an inability of reaction toward the augmentation of the CBF after the carotid recanalization. Although most patients have mild symptoms and signs, progression to severe and life-threatening symptoms can occur if CHS is not recognised and treated adequately. Because CHS is a diagnosis based on several non-specific signs and symptoms, patients may be misdiagnosed as having one of the better-known causes of perioperative complications like thromboembolism.
Cardiovascular disease (CVD) represents the leading cause of death worldwide. While medications, such as statins, significantly reduce atherosclerotic CVD (ASCVD) risk by lowering low density lipoprotein levels, they may also have pleiotropic effects on inflammation. The immunomodulatory effects of these medications are relevant to ASCVD risk reduction given that inflammation plays a central role in atherosclerotic plaque formation (atherogenesis) and influences the development of vulnerable plaque morphology. Patients on statins, however, may have residual inflammation contributing to incident ASCVD despite the potent LDL-lowering effects of statins. While new therapies, such as proprotein convertase subtilisin/kexin type 9 (PSCK9) inhibitors, further reduce incident ASCVD and drastically reduce LDL-C below that achieved by statin therapy alone, PCSK9 inhibitors may also have pleiotropic effects on inflammation. Thus, PCSK9 inhibitors may help reduce arterial inflammation to a level closer to that of patients without ASCVD. This study will apply a novel targeted molecular imaging approach, technetium 99m (99mTc)-tilmanocept SPECT/CT, to determine if residual macrophage-specific arterial inflammation is present with statin therapy and the immunomodulatory effects of PSCK9 inhibition. Given the continued high mortality and morbidity attributable to ASCVD, strong imperatives exist to better understand the immunomodulatory effects of lipid lowering therapies and residual inflammatory risk. This understanding, in turn, will inform the development of new ASCVD preventative and treatment strategies as well as elucidate other indications for established therapies.
The goal of this observational study is to assess the effect of regional versus general anesthesia on carotid endarterectomy thirty-day outcomes. The main questions it aims to answer are: - Is regional anesthesia associated with lower incidence of major morbidity and mortality? - Is regional anesthesia associated with lower incidences of secondary adverse events? Participants will be sampled from the 2015-2019 American College of Surgeons National Surgical Quality Improvement Program
In this proposal, the investigators will demonstrate the feasibility and noninferiority of telerobotic ultrasonography as compared to traditional manual acquisition in performing a limited carotid Duplex examination and in carotid plaque detection.
The retinal vessels have been shown to reflect vascular changes inherent to systemic pathologies, even when no ocular disease is identified. As such, the eye's vasculature is ableto serve as a window to the vascular health of the human body and a means of assessing systemic endothelial function. Optical coherence tomography angiography (OCTA) employs optical means to image all the retinal vascular layers and the choroid, providing an extremely detailed image of the microvascular network in a fast, reproducible and totally non-invasive way. As such, it is currently the best non-invasive way of having an image of human capillaries. Recently, OCTA has been used to study the retinal vessels' structure and function in several cardiovascular diseases. As an example of its predictive potential, reduced retinal microvascular density has been associated with the cardiovascular risk profile in patients admitted to the hospital for an acute coronary syndrome. Recent studies have also shown the retinal microvasculature density to be reduced in patients with carotid artery disease (CAD), namely carotid stenosis, and that endarterectomy increases retinal flow and vessel density.
Evaluate the safety and efficacy of the Timing Carotid Stent for the treatment of carotid artery stenosis in patients.
Several studies have shown an association between platelet function and stroke in patients undergoing carotid thromboendarterectomy (TEA). The present study will assess the correlation between platelet function evaluated by the impedance aggregometry and neurological events in patients undergoing carotid TEA.