Clinical Trials Logo

Cardiac Arrest clinical trials

View clinical trials related to Cardiac Arrest.

Filter by:

NCT ID: NCT06338345 Not yet recruiting - Cardiac Arrest Clinical Trials

Pharmacokinetics and Modelling of Beta-Lactam in ECMO-VA Patients

KAMELOT
Start date: September 1, 2024
Phase: N/A
Study type: Interventional

The use of antibiotic therapy is common in intensive care units and primarily involves beta-lactams. Its optimal implementation is made difficult by the pharmacokinetic changes inherent in critically ill patients. Despite the current recommendations from the French Society of Anesthesiology and Intensive Care (SFAR) and the French Society of Pharmacology and Therapeutics (SFPT), there are no recommendations on prescription modalities for patients under veno-arterial extracorporeal membrane oxygenation (VA-ECMO). The use of antibiotic therapy is common in VA-ECMO patients and their pharmacokinetic variability factors are then exacerbated. We aim to conduct a prospective, multicenter, interventional study designed to identify predictive factors for failure to achieve therapeutic target circulating concentrations of beta-lactams in patients under VA-ECMO treated with one of the studied beta-lactams

NCT ID: NCT06327334 Not yet recruiting - Cardiac Arrest Clinical Trials

Brain Heart InterActioNs in Cardiac Arrest. Ancillary Study of the HEAVENwARd Trial

BHIANCA
Start date: April 15, 2024
Phase:
Study type: Observational

Despite advances in post-resuscitation care of patients with cardiac arrest (CA), the majority of survivors who are treated after restoration of spontaneous circulation (ROSC) will have sequelae of hypoxic-ischemic brain injury ranging from mild cognitive impairment to a vegetative state. Current recommendations suggest using a multimodal approach to predict poor prognosis, meaning combining markers together. Yet, a substantial proportion of patients do not have a clear prognostic evaluation even when applying the latest ESICM recommendations algorithm published in 2021. It is therefore important to identify new prognostic markers to predict both unfavorable and favorable outcomes. Data regarding the pathophysiological mechanisms of post-anoxic encephalopathy suggest a diffuse anoxo-ischemic injury. However, post-mortem neuropathology data suggest that these lesions do not uniformly affect neuroanatomical structures, with some regions (especially hippocampal and insular) appearing more sensitive to anoxia. Conversely, the brainstem appears less affected by anoxic lesions. Under physiological conditions, there are interactions between the heart and the brain, and between the brain and the heart mainly related to the autonomic nervous system, through interactions between central cortical control structures (especially insular) and brainstem structures (at the level of the bulb) and peripheral structures of the heart. Exploring the pathophysiological mechanisms of heart-brain interactions post-CA could thus help better understand the pathophysiology of anoxo-ischemic encephalopathy, before considering potential therapeutic targets. Furthermore, this heart-brain dysfunction could have prognostic value. Indeed, recent studies in healthy subjects and patients with consciousness disorders suggest that autonomic nervous system activity measured by brain-heart interactions could be a reliable marker of consciousness and cognitive processing. These coupled heart-brain interactions can be evaluated through synchronous electroencephalogram (EEG) and electrocardiogram (ECG) recordings, as there are coupled interactions between the signals of these two organs. The existence of abnormal brain-heart coupling could be associated, on the one hand, with the severity of post-anoxic encephalopathy, and on the other hand, with neurological prognosis in patients with persistent coma post-CA. This ancillary study of a multicentre prospective cohort "HEAVENwARd study" (NCT06044922) will assess the prevalence and prognostic value of bilateral brain-heart interactions in comatose patients after CA.

NCT ID: NCT06306898 Not yet recruiting - Cardiac Arrest Clinical Trials

Intra-Arrest-Ventilation in Human Cadavers

Start date: March 18, 2024
Phase: N/A
Study type: Interventional

The study investigates the influence of non-synchronized bag-device-ventilation and intermittent positive pressure ventilation (IPPV), as recommended in the current resuscitation guidelines of the European Resuscitation Concil (tidal Volume (Vt) = 5-6 mL/kg body weight, respiratory rate = 10 min-1) and Chest Compression Synchronized Ventilation (pInsp = 40 mbar; respiratory rate = chest compression rate) with regard to achieving a sufficient tidal volume and the tightness of various supraglottic airway devices (laryngeal mask, i-Gel-laryngeal mask, laryngeal tube) and endotracheal intubation.

NCT ID: NCT06249035 Not yet recruiting - Cardiac Arrest Clinical Trials

Feasibility of TEE During Cardiac Arrest in Dutch Emergency Departments

Start date: April 1, 2024
Phase: N/A
Study type: Interventional

The goal of this feasibility study is to learn if Dutch ED providers are able to use transesophageal echocardiography during cardiac arrest. The main question it aims to answer is: • are the ED providers able to determine the area of maximal compression of the heart using TEE

NCT ID: NCT06229418 Not yet recruiting - Cardiac Arrest Clinical Trials

Developing and Testing Drone-Delivered AEDs for Cardiac Arrests In Rural America

RESTORe-CARE
Start date: January 1, 2025
Phase: N/A
Study type: Interventional

The overall goal of this project is to design, develop, and pilot test an emergency healthcare drone delivery system suitable for rural communities that can deliver AEDs to out-of-hospital cardiac arrest (OHCA) locations more rapidly than can be achieved with current first responder and EMS systems. The goal is to determine whether this method of AED delivery can be achieved rapidly enough to justify a future clinical trial directly testing its ability to improve OHCA survival.

NCT ID: NCT06203847 Not yet recruiting - Cardiac Arrest Clinical Trials

The Effect of Prehospital Combination of Epinephrine, Vasopressin, and Steroid in OHCA

REVIVES
Start date: February 1, 2024
Phase: N/A
Study type: Interventional

This project is a randomized controlled clinical research design, The hypothesis P-I-C-O of the study is: For adult patients in the Taipei City and New Taipei City communities who have suffered sudden non-traumatic death and have been resuscitated by advanced paramedics, the intervention group that receives combined drug treatment (epinephrine, vasopressin, methylprednisolone) has a better rate of sustained recovery of spontaneous circulation (ROSC) (primary outcome) and long-term survival status (secondary outcomes) compared to the control group that receives single drug treatment (epinephrine).

NCT ID: NCT06156059 Not yet recruiting - Septic Shock Clinical Trials

Oral Bedtime Melatonin in Critically Ill Patients

Mel-ICU
Start date: February 1, 2025
Phase: Phase 4
Study type: Interventional

Oxidative stress is one of the main mechanisms causing harm in severe infection with septic shock, ischemia-reperfusion injury in resuscitated cardiac arrest and ischemic and hemorrhagic stroke. Melatonin is a potent scavenger of the mediators of oxidative stress, oxygen and nitrogen-reactive species, which directly injure cell structures like walls and DNA and thus cause organ dysfunction. In a previous study we have observed that high-dose oral bedtime melatonin (OBM) is associated with improved organ function in severe Covid-19 patients

NCT ID: NCT06113939 Not yet recruiting - Cardiac Arrest Clinical Trials

Prevention of Infection of the Respiratory Tract Through Application of Non-Invasive Methods of Secretion Suctioning

PIRAMIDES
Start date: July 2024
Phase: N/A
Study type: Interventional

Severe trauma, head trauma, stroke and resuscitated cardiac arrest patients requiring endotracheal intubation and mechanical ventilation are at high risk of early-onset ventilator-associated pneumonia (EO-VAP). A short course of systemic antibiotic is recommended for prophylaxis. This study intends to assess the safety and efficacy of 2 alternative mechanical non-invasive airway clearance techniques in the prevention of EO-VAP in an open label randomized pilot trial of 20 subjects per study group i.e., 60 cases. The interventions will be in place for 7 days and the observational periods will be 14 days.

NCT ID: NCT06103448 Not yet recruiting - Stroke Clinical Trials

Prediction of the Risks of Cardiovascular Mortality

Start date: January 2024
Phase:
Study type: Observational

Monitoring risks of cardiovascular diseases in working population (18 - 65 years old) by monitoring their BMI, ankle-brachial index with pulse wave velocity, cholesterol and glycemia.

NCT ID: NCT06044922 Not yet recruiting - Cardiac Arrest Clinical Trials

Heart Rate Variability in Early Prediction of a Noxic Brain Injury After Cardiac Arrest

HEAVENwARd
Start date: April 15, 2024
Phase:
Study type: Observational

Despite advances in post-resuscitation care of patients with cardiac arrest (CA), the majority of survivors who are treated after restoration of spontaneous circulation (ROSC) will have sequelae of hypoxic-ischemic brain injury ranging from mild cognitive impairment to a vegetative state. Early prognostication in comatose patients after ROSC remains challenging. Recent recommendations suggest carrying out clinical and paraclinical tests during the first 72 h after ROSC, to predict a poor neurological outcome with a specificity greater than 95% (no pupillary and corneal reflexes, bilaterally absent N20 somatosensory evoked potential wave, status myoclonus, highly malignant electroencephalography including suppressed background ± periodic discharges or burst-suppression, neuron-specific enolase (NSE) > 60 µg/L, a diffuse and extensive anoxic injury on brain CT/MRI), but with a low sensitivity due to frequent confounding factors. The heart rate variability (HRV) is a simple and non-invasive technique for assessing the autonomic nervous system function. In patients with a recent myocardial infarction, reduced HRV is associated with an increased risk for malignant arrhythmias or death. In neurology, reduced HRV is associated with a poor outcome in severe brain injury patients and allows to predict early neurological deterioration and recurrent ischemic stroke after acute ischemic stroke. A reduced HRV could be a sensitive, specific and early indicator of diffuse anoxic brain injury after CA. This multicenter prospective cohort study assesses the added value of early HRV (within 24h of ICU admission) for neuroprognostication after cardiac arrest.