Cancer Clinical Trial
— EUS HeparinOfficial title:
Wet Heparinized Suction: A Novel Technique to Enhance Tissue Acquisition for Endoscopic Ultrasound Guided Fine Needle Biopsy (EUS-FNB) of Solid Abdominal Masses: A Randomized Prospective Trial
The purpose of this research is to compare the amount and quality of tissue obtained by EUS-FNB when the device is flushed with an anticoagulant or "blood thinner" vs. saline a salt water solution as well as the use of a microsieve in order for the doctor to look at the tissue to check the acceptability of the specimens before sending for analysis. You will be randomly assigned (like a flip of a coin) to have either the blood thinner or the salt water solution placed within the needle being used to sample your abdominal tumor and to have either a sieve used or not. You will be one of 42 participants enrolled in this data collection study which includes 1 sites in the United States.
Status | Not yet recruiting |
Enrollment | 42 |
Est. completion date | December 12, 2024 |
Est. primary completion date | December 12, 2024 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Age = 18 year - Non-pregnant Patients - Patients with the presence of a solid abdominal mass as seen on diagnostic imaging [ie. ultrasound (US), computer tomography (CT) or magnetic resonance imaging (MRI)] scheduled to undergo EUS examination OR Patients who underwent a prior EUS-FNA/FNB for solid pancreatic mass and did not receive a conclusive diagnosis - Patients with platelet count > 50,000 - Patients with International Normalized Ratio (INR) < 1.5 Exclusion Criteria: - Age < 18 years - Pregnant Patients - Patients who cannot consent for themselves - Patients with anticoagulants or anti-platelet agents (excluding aspirin) within the last 7-10 days - Patients with cystic abdominal masses - Patients with a platelet count < 50,000 - Patients with an INR > 1.5 - Patients with a heparin or porcine allergy - Patients with prior heparin induced thrombocytopenia (HIT) - Patient's with religious aversion to porcine-containing products |
Country | Name | City | State |
---|---|---|---|
United States | Moffitt Cancer Center | Tampa | Florida |
Lead Sponsor | Collaborator |
---|---|
H. Lee Moffitt Cancer Center and Research Institute |
United States,
Attam R, Arain MA, Bloechl SJ, Trikudanathan G, Munigala S, Bakman Y, Singh M, Wallace T, Henderson JB, Catalano MF, Guda NM. "Wet suction technique (WEST)": a novel way to enhance the quality of EUS-FNA aspirate. Results of a prospective, single-blind, randomized, controlled trial using a 22-gauge needle for EUS-FNA of solid lesions. Gastrointest Endosc. 2015;81(6):1401-7. doi: 10.1016/j.gie.2014.11.023. Epub 2015 Feb 27. — View Citation
Burlingame OO, Kesse KO, Silverman SG, Cibas ES. On-site adequacy evaluations performed by cytotechnologists: correlation with final interpretations of 5241 image-guided fine-needle aspiration biopsies. Cancer Cytopathol. 2012 Jun 25;120(3):177-84. doi: 10.1002/cncy.20184. Epub 2011 Aug 31. — View Citation
Cotton PB, Eisen GM, Aabakken L, Baron TH, Hutter MM, Jacobson BC, Mergener K, Nemcek A Jr, Petersen BT, Petrini JL, Pike IM, Rabeneck L, Romagnuolo J, Vargo JJ. A lexicon for endoscopic adverse events: report of an ASGE workshop. Gastrointest Endosc. 2010 Mar;71(3):446-54. doi: 10.1016/j.gie.2009.10.027. No abstract available. — View Citation
Diehl DL, Mok SRS, Khara HS, Johal AS, Kirchner HL, Lin F. Heparin priming of EUS-FNA needles does not adversely affect tissue cytology or immunohistochemical staining. Endosc Int Open. 2018 Mar;6(3):E356-E362. doi: 10.1055/s-0043-121880. Epub 2018 Mar 7. — View Citation
Dumonceau JM, Deprez PH, Jenssen C, Iglesias-Garcia J, Larghi A, Vanbiervliet G, Aithal GP, Arcidiacono PG, Bastos P, Carrara S, Czako L, Fernandez-Esparrach G, Fockens P, Gines A, Havre RF, Hassan C, Vilmann P, van Hooft JE, Polkowski M. Indications, results, and clinical impact of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline - Updated January 2017. Endoscopy. 2017 Jul;49(7):695-714. doi: 10.1055/s-0043-109021. Epub 2017 May 16. — View Citation
Eloubeidi MA, Tamhane A, Jhala N, Chhieng D, Jhala D, Crowe DR, Eltoum IA. Agreement between rapid onsite and final cytologic interpretations of EUS-guided FNA specimens: implications for the endosonographer and patient management. Am J Gastroenterol. 2006 Dec;101(12):2841-7. doi: 10.1111/j.1572-0241.2006.00852.x. Epub 2006 Oct 6. — View Citation
Gleeson FC, Clayton AC, Zhang L, Clain JE, Gores GJ, Rajan E, Smyrk TC, Topazian MD, Wang KK, Wiersema MJ, Levy MJ. Adequacy of endoscopic ultrasound core needle biopsy specimen of nonmalignant hepatic parenchymal disease. Clin Gastroenterol Hepatol. 2008 Dec;6(12):1437-40. doi: 10.1016/j.cgh.2008.07.015. Epub 2008 Jul 26. — View Citation
Hebert-Magee S, Bae S, Varadarajulu S, Ramesh J, Frost AR, Eloubeidi MA, Eltoum IA. The presence of a cytopathologist increases the diagnostic accuracy of endoscopic ultrasound-guided fine needle aspiration cytology for pancreatic adenocarcinoma: a meta-analysis. Cytopathology. 2013 Jun;24(3):159-71. doi: 10.1111/cyt.12071. — View Citation
Iglesias-Garcia J, Dominguez-Munoz JE, Abdulkader I, Larino-Noia J, Eugenyeva E, Lozano-Leon A, Forteza-Vila J. Influence of on-site cytopathology evaluation on the diagnostic accuracy of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) of solid pancreatic masses. Am J Gastroenterol. 2011 Sep;106(9):1705-10. doi: 10.1038/ajg.2011.119. Epub 2011 Apr 12. — View Citation
Itoi T, Itokawa F, Sofuni A, Nakamura K, Tsuchida A, Yamao K, Kawai T, Moriyasu F. Puncture of solid pancreatic tumors guided by endoscopic ultrasonography: a pilot study series comparing Trucut and 19-gauge and 22-gauge aspiration needles. Endoscopy. 2005 Apr;37(4):362-6. doi: 10.1055/s-2004-826156. — View Citation
Iwashita T, Yasuda I, Doi S, Ando N, Nakashima M, Adachi S, Hirose Y, Mukai T, Iwata K, Tomita E, Itoi T, Moriwaki H. Use of samples from endoscopic ultrasound-guided 19-gauge fine-needle aspiration in diagnosis of autoimmune pancreatitis. Clin Gastroenterol Hepatol. 2012 Mar;10(3):316-22. doi: 10.1016/j.cgh.2011.09.032. Epub 2011 Oct 20. — View Citation
Jhala NC, Jhala DN, Chhieng DC, Eloubeidi MA, Eltoum IA. Endoscopic ultrasound-guided fine-needle aspiration. A cytopathologist's perspective. Am J Clin Pathol. 2003 Sep;120(3):351-67. doi: 10.1309/MFRF-J0XY-JLN8-NVDP. — View Citation
Kasugai H, Yamamoto R, Tatsuta M, Okano Y, Okuda S, Kishigami Y, Kitamura T, Wada A, Tamura H. Value of heparinized fine-needle aspiration biopsy in liver malignancy. AJR Am J Roentgenol. 1985 Feb;144(2):243-4. doi: 10.2214/ajr.144.2.243. — View Citation
Larghi A, Capurso G, Carnuccio A, Ricci R, Alfieri S, Galasso D, Lugli F, Bianchi A, Panzuto F, De Marinis L, Falconi M, Delle Fave G, Doglietto GB, Costamagna G, Rindi G. Ki-67 grading of nonfunctioning pancreatic neuroendocrine tumors on histologic samples obtained by EUS-guided fine-needle tissue acquisition: a prospective study. Gastrointest Endosc. 2012 Sep;76(3):570-7. doi: 10.1016/j.gie.2012.04.477. Erratum In: Gastrointest Endosc. 2012 Nov;76(5):1085. — View Citation
Mok SRS, Diehl DL, Johal AS, Khara HS, Confer BD, Mudireddy PR, Kirchner HL, Chen ZE. A prospective pilot comparison of wet and dry heparinized suction for EUS-guided liver biopsy (with videos). Gastrointest Endosc. 2018 Dec;88(6):919-925. doi: 10.1016/j.gie.2018.07.036. Epub 2018 Aug 16. — View Citation
Mok SRS, Diehl DL, Johal AS, Khara HS, Confer BD, Mudireddy PR, Kovach AH, Diehl MM, Kirchner HL, Chen ZE. Endoscopic ultrasound-guided biopsy in chronic liver disease: a randomized comparison of 19-G FNA and 22-G FNB needles. Endosc Int Open. 2019 Jan;7(1):E62-E71. doi: 10.1055/a-0655-7462. Epub 2019 Jan 4. — View Citation
Mok SRS, Diehl DL. The Role of EUS in Liver Biopsy. Curr Gastroenterol Rep. 2019 Jan 31;21(2):6. doi: 10.1007/s11894-019-0675-8. — View Citation
Nieto J, Khaleel H, Challita Y, Jimenez M, Baron TH, Walters L, Hathaway K, Patel K, Lankarani A, Herman M, Holloman D, Saab S. EUS-guided fine-needle core liver biopsy sampling using a novel 19-gauge needle with modified 1-pass, 1 actuation wet suction technique. Gastrointest Endosc. 2018 Feb;87(2):469-475. doi: 10.1016/j.gie.2017.05.013. Epub 2017 May 24. — View Citation
Schulman AR, Thompson CC, Odze R, Chan WW, Ryou M. Optimizing EUS-guided liver biopsy sampling: comprehensive assessment of needle types and tissue acquisition techniques. Gastrointest Endosc. 2017 Feb;85(2):419-426. doi: 10.1016/j.gie.2016.07.065. Epub 2016 Aug 13. — View Citation
Sey MS, Al-Haddad M, Imperiale TF, McGreevy K, Lin J, DeWitt JM. EUS-guided liver biopsy for parenchymal disease: a comparison of diagnostic yield between two core biopsy needles. Gastrointest Endosc. 2016 Feb;83(2):347-52. doi: 10.1016/j.gie.2015.08.012. Epub 2015 Aug 13. — View Citation
Thomas T, Kaye PV, Ragunath K, Aithal G. Efficacy, safety, and predictive factors for a positive yield of EUS-guided Trucut biopsy: a large tertiary referral center experience. Am J Gastroenterol. 2009 Mar;104(3):584-91. doi: 10.1038/ajg.2008.97. Epub 2009 Feb 10. — View Citation
Vilmann P, Jacobsen GK, Henriksen FW, Hancke S. Endoscopic ultrasonography with guided fine needle aspiration biopsy in pancreatic disease. Gastrointest Endosc. 1992 Mar-Apr;38(2):172-3. doi: 10.1016/s0016-5107(92)70385-x. No abstract available. — View Citation
Wahnschaffe U, Ullrich R, Mayerle J, Lerch MM, Zeitz M, Faiss S. EUS-guided Trucut needle biopsies as first-line diagnostic method for patients with intestinal or extraintestinal mass lesions. Surg Endosc. 2009 Oct;23(10):2351-5. doi: 10.1007/s00464-009-0345-2. Epub 2009 Mar 5. — View Citation
* Note: There are 23 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Aggregate specimen length (ASL) | sum length of all pieces of tissue obtained from EUS-FNB | immediately after the intervention/procedure/surgery | |
Secondary | Length of the longest piece (LLP) | total length of the longest tissue piece | immediately after the intervention/procedure/surgery | |
Secondary | Mean number of small pieces | defined by pieces measuring <4 mm in length | immediately after the intervention/procedure/surgery | |
Secondary | Mean number of medium pieces | defined by pieces measuring 5-8 mm in length | immediately after the intervention/procedure/surgery | |
Secondary | Means number of long pieces | defined by pieces measuring >9 mm in length | immediately after the intervention/procedure/surgery | |
Secondary | Histology adequacy score | Histology adequacy score, defined as 1, a pathologist can make a clinical diagnosis using the tissue obtained or 0 a pathologist cannot make a clinical diagnosis using the tissue obtained | immediately after the intervention/procedure/surgery | |
Secondary | Presence of a visible core specimen | defined as 1, visible tissue seen by the endoscopist at the time of tissue preparation or 0 no visible tissue seen by the endoscopist at the time of tissue preparation | immediately after the intervention/procedure/surgery | |
Secondary | Presence of visible clots in specimen | defined as 1, visible clots seen by the endoscopist at the time of tissue preparation or 0 visible clots seen by the endoscopist at the time of tissue preparation | immediately after the intervention/procedure/surgery | |
Secondary | Mean blood clot score during histology | Defined as (0: Nearly absent of red blood cells (RBC), 1+: Monolayer of RBC, no cluster formation, 2+: Aggregates of RBC present, < x40 high power field, 3+: Aggregates of RBC present, > x40 high power field). | immediately after the intervention/procedure/surgery | |
Secondary | Adequacy of diagnosis | based upon fluid washed out from the microsieve tissue sample defined by Smears with relatively abundant and well-visualized lesional material. | immediately after the intervention/procedure/surgery |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05346796 -
Survivorship Plan HEalth REcord (SPHERE) Implementation Trial
|
N/A | |
Recruiting |
NCT05094804 -
A Study of OR2805, a Monoclonal Antibody Targeting CD163, Alone and in Combination With Anticancer Agents
|
Phase 1/Phase 2 | |
Completed |
NCT04867850 -
Effect of Behavioral Nudges on Serious Illness Conversation Documentation
|
N/A | |
Enrolling by invitation |
NCT04086251 -
Remote Electronic Patient Monitoring in Oncology Patients
|
N/A | |
Completed |
NCT01285037 -
A Study of LY2801653 in Advanced Cancer
|
Phase 1 | |
Completed |
NCT00680992 -
Study of Denosumab in Subjects With Giant Cell Tumor of Bone
|
Phase 2 | |
Completed |
NCT00062842 -
Study of Irinotecan on a Weekly Schedule in Children
|
Phase 1 | |
Active, not recruiting |
NCT04548063 -
Consent Forms in Cancer Research: Examining the Effect of Length on Readability
|
N/A | |
Completed |
NCT04337203 -
Shared Healthcare Actions and Reflections Electronic Systems in Survivorship
|
N/A | |
Recruiting |
NCT04349293 -
Ex-vivo Evaluation of the Reactivity of the Immune Infiltrate of Cancers to Treatments With Monoclonal Antibodies Targeting the Immunomodulatory Pathways
|
N/A | |
Terminated |
NCT02866851 -
Feasibility Study of Monitoring by Web-application on Cytopenia Related to Chemotherapy
|
N/A | |
Active, not recruiting |
NCT05304988 -
Development and Validation of the EFT for Adolescents With Cancer
|
||
Completed |
NCT04448041 -
CRANE Feasibility Study: Nutritional Intervention for Patients Undergoing Cancer Surgery in Low- and Middle-Income Countries
|
||
Completed |
NCT00340522 -
Childhood Cancer and Plexiform Neurofibroma Tissue Microarray for Molecular Target Screening and Clinical Drug Development
|
||
Recruiting |
NCT04843891 -
Evaluation of PET Probe [64]Cu-Macrin in Cardiovascular Disease, Cancer and Sarcoidosis.
|
Phase 1 | |
Active, not recruiting |
NCT03844048 -
An Extension Study of Venetoclax for Subjects Who Have Completed a Prior Venetoclax Clinical Trial
|
Phase 3 | |
Completed |
NCT03109041 -
Initial Feasibility Study to Treat Resectable Pancreatic Cancer With a Planar LDR Source
|
Phase 1 | |
Completed |
NCT03167372 -
Pilot Comparison of N-of-1 Trials of Light Therapy
|
N/A | |
Terminated |
NCT01441115 -
ECI301 and Radiation for Advanced or Metastatic Cancer
|
Phase 1 | |
Recruiting |
NCT06206785 -
Resting Energy Expenditure in Palliative Cancer Patients
|