Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT03062878
Other study ID # Pro8425
Secondary ID
Status Completed
Phase
First received
Last updated
Start date February 1, 2017
Est. completion date August 1, 2018

Study information

Verified date March 2022
Source Kansas State University
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

The overall goal of this project is to determine the effects of anti-cancer chemotherapy on reflex control of blood pressure and vascular function. Recent data have demonstrated that cardiovascular disease-related mortality is the 2nd cause of morbidity and mortality for 7-year cancer survivors treated with chemotherapy. This anti-cancer treatment-mediated cardiotoxicity is a progressive process that begins at the molecular level, progresses to myocardial injury and left ventricular dysfunction, cumulating as heart failure and cardiovascular disease-related mortality. In parallel to these cardiac-specific changes, chemotherapy has also been shown to increase the risk for vascular-related abnormalities. However, the impact of adjuvant treatments on the function and structure of the peripheral vascular system remains poorly understood. With normal aging, two of the most important vascular adaptations to arteries, which strongly contribute to the increased risk of vascular-related and general cardiovascular disease, are an increase in large artery stiffness and dysfunction of the vascular endothelium. Therefore, the overall goal of this project is to determine the effects of anthracycline-based chemotherapy on large and small artery function and structure. The central hypothesis is that this type of cancer therapy results in negative vascular consequences as determined by non-invasive evaluation of spontaneous blood pressure control, carotid artery stiffness, and vascular endothelium-dependent vasodilation. This observational study is designed to increase our understanding of the vascular changes that occur during and following anti-cancer chemotherapy and provide insight into new methods that will decrease cardiovascular disease risk in those treated for cancer.


Description:

Cancer remains one of the leading causes of death in modern society. Breast cancer is a prevalent type of cancer in most societies, but due to increasing rates of detection coupled with advanced therapies, of the ≈230,000 people newly diagnosed each year with breast cancer, approximately 90% are expected to live beyond 5 years. Despite the trend in improved cancer-related morality, cancer survivors are at a significantly increased risk for cardiovascular disease (CVD) morbidity and mortality. As such, approximately $800 million is spent annually in providing cardiovascular care for female cancer survivors alone. In a recent study, Daher et al. (2012) reported a Framingham Risk Score of 8.4 and a 10-year risk of general CVD of 7.6% in men and women cancer survivors older than 30 yrs. More importantly, they also determined that the mean vascular age of cancer survivors was 8 years greater than their chronological age, suggesting that sub-clinical manifestation of CVD may be present within the vasculature of some cancer survivors. The definition and scientific study of cardiotoxicity has, to date, primarily focused solely on the myocardial injury related to adjuvant cancer therapy and the National Cancer Institute has defined it as "toxicity that affects the heart" (http://www.cancer.gov/dictionary/). However, cancer survivors are also at risk for vascular-related abnormalities. Despite this risk, the impact of adjuvant treatments on the function and structure of the peripheral vascular system is still poorly understood. With normal aging, two of the most important vascular adaptations to arteries, which strongly contribute to the increased risk of vascular-related and general CVD, are an increase in large artery stiffness and dysfunction of the vascular endothelium [15, 16]. In subjects receiving anthracycline chemotherapy, Chaosuwannaki et al. (2010), Miza-Stec et al. (2013), and Draft et al. (2013) independently demonstrated significant increases in aortic stiffness 4-6 mo following treatment. Likewise, carotid intima-media thickness has been shown to increase within 6 mo of treatment with chemotherapy. This is critical given that arterial stiffness and intima-media thickness both are independently associated with increased risk of cardiovascular disease. In addition, carotid artery stiffness is a key determinant of the sympathetic baroreflex sensitivity in older men and women. This information suggests that decreases in baroreflex sensitivity may be occurring following chemotherapy treatment, which is important given it is a primary mechanism through which the autonomic nervous system regulates arterial blood pressure and that a low baroreflex sensitivity is associated with cardiovascular morbidity and mortality. Specific Aim 1 will address this question. The vascular endothelium is the first physiological barrier encountered by intravenously administered chemotherapy. Unfortunately, the effects of adjuvant therapy on endothelial function have primarily been studied in childhood cancer survivors or following a single treatment session. Chow et al. (2006) observed a decreased brachial artery flow-mediated dilation (FMD), a measurement of endothelial-dependent dilation, ≈20 mo following anthracycline-based chemotherapy. Similarly, Vaughn et at. (2008) demonstrated a decreased FMD in long-term survivors of testicular cancer. In addition, several reports have demonstrated a decrease in arterial reactivity to various biological vasodilators (e.g., sodium nitroprusside, acetylcholine) following acute chemotherapy and radiation. In contrast to these studies, Jones et al. (2007) reported no difference in FMD in breast cancer patients ≈20 mo post-treatment compared to healthy controls. Increasing our understanding of the effects of chemotherapy on endothelial function is essential, especially since it can be the initial step in the development of cardiovascular disease. Recently, the skin microcirculation has been used as a model circulation to evaluate the changes in vascular health in a variety of diseases including hypertension, renal disease, diabetes, atherosclerosis, coronary artery disease, and heart failure. This work has been facilitated, in part, by its easy accessibility and high responsiveness to biological vasodilators. Given the paucity of information on endothelial health in cancer patients undergoing anthracycline chemotherapy evaluation of the skin microcirculation provides a non-invasive and useful method of increasing our understanding of cardiotoxicity. Specific Aim 2 will address this problem. Specific Aim 1: Evaluate the changes in spontaneous blood pressure control and arterial stiffness in patients treated with anthracycline-based chemotherapy. Hypothesis 1a: Spontaneous baroreflex sensitivity will be significantly decreased in cancer patients and cancer survivors treated with anthracycline-based chemotherapy. Hypothesis 1b: Changes in baroreflex control of blood pressure will be related to increases in carotid artery stiffness and cardiac changes in left ventricular ejection time. Specific Aim 2: Evaluate the changes in macrovascular and microvascular vascular function. Hypothesis 2a: Treatment with anthracycline-based chemotherapy will significantly decrease endothelium-dependent vasodilation in both the large brachial artery and the small microvascular capillaries in the skin. Hypothesis 2b: Changes in vascular function will be associated with molecular markers of endothelial function and oxidative stress.


Recruitment information / eligibility

Status Completed
Enrollment 60
Est. completion date August 1, 2018
Est. primary completion date August 1, 2018
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 21 Years and older
Eligibility Inclusion Criteria: - Give voluntary consent to participate in the study - (Group 1) Diagnosed Stage I-III breast cancer or lymphoma cancer with a > 2 year life expectancy - (Group 1) Current chemotherapy treatment includes anthracyclines - (Group 2) History of Stage I-III breast cancer or lymphoma cancer with a > 2 year life expectancy - (Group 2) 1 - 5 years removed from last date of anthracycline-based chemotherapy Exclusion Criteria: - History of clinical cardiovascular disease (Atherosclerotic cardiovascular disease (ASCVD) defined by history of acute coronary syndromes, myocardial infarction (MI), stable or unstable angina, coronary or other arterial revascularization, stroke, transient ischemia attack (TIA), or peripheral arterial disease presumed to be of atherosclerotic origin) - Not met the above criteria - Unable to provide informed consent

Study Design


Related Conditions & MeSH terms


Intervention

Other:
Arterial blood pressure
Continuously monitored for 5-30 minutes via finger photoplesmography
Vascular Ultrasound
Assessment of carotid artery cross sectional area and intima-media thickness. Assessment of brachial artery diameter
Venous blood sample
Evaluation of oxidative stress via serum lipid hydroperoxide
Skin microcirculatory blood flow
Assessed non-invasively in the forearm skin via Laser Doppler flowmetry in response to locally delivered acetylcholine (ACh) and sodium nitroprusside (SNP) via iontophoresis.

Locations

Country Name City State
United States Lafene Health Center Manhattan Kansas

Sponsors (1)

Lead Sponsor Collaborator
Carl Ade, M.S., Ph.D.

Country where clinical trial is conducted

United States, 

References & Publications (6)

Chaosuwannakit N, D'Agostino R Jr, Hamilton CA, Lane KS, Ntim WO, Lawrence J, Melin SA, Ellis LR, Torti FM, Little WC, Hundley WG. Aortic stiffness increases upon receipt of anthracycline chemotherapy. J Clin Oncol. 2010 Jan 1;28(1):166-72. doi: 10.1200/JCO.2009.23.8527. Epub 2009 Nov 9. — View Citation

Didier KD, Ederer AK, Reiter LK, Brown M, Hardy R, Caldwell J, Black C, Bemben MG, Ade CJ. Altered Blood Flow Response to Small Muscle Mass Exercise in Cancer Survivors Treated With Adjuvant Therapy. J Am Heart Assoc. 2017 Feb 7;6(2). pii: e004784. doi: 10.1161/JAHA.116.004784. — View Citation

Duquaine D, Hirsch GA, Chakrabarti A, Han Z, Kehrer C, Brook R, Joseph J, Schott A, Kalyanaraman B, Vasquez-Vivar J, Rajagopalan S. Rapid-onset endothelial dysfunction with adriamycin: evidence for a dysfunctional nitric oxide synthase. Vasc Med. 2003 May;8(2):101-7. — View Citation

Ederer AK, Didier KD, Reiter LK, Brown M, Hardy R, Caldwell J, Black CD, Larson RD, Ade CJ. Influence of Adjuvant Therapy in Cancer Survivors on Endothelial Function and Skeletal Muscle Deoxygenation. PLoS One. 2016 Jan 25;11(1):e0147691. doi: 10.1371/journal.pone.0147691. eCollection 2016. — View Citation

Mulrooney DA, Blaes AH, Duprez D. Vascular injury in cancer survivors. J Cardiovasc Transl Res. 2012 Jun;5(3):287-95. doi: 10.1007/s12265-012-9358-7. Epub 2012 Mar 29. — View Citation

Patnaik JL, Byers T, DiGuiseppi C, Dabelea D, Denberg TD. Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: a retrospective cohort study. Breast Cancer Res. 2011 Jun 20;13(3):R64. doi: 10.1186/bcr2901. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Spontaneous baroreflex sensitivity Measured once in each experimental group 1 day
Primary Acetylcholine induced cutaneous (skin) blood flow (%) Measured once in each experimental group 1 day
Secondary Carotid artery stiffness Measured once in each experimental group 1 day
Secondary Brachial-artery flow-mediated dilation Measured once in each experimental group 1 day
See also
  Status Clinical Trial Phase
Recruiting NCT04681911 - Inetetamab Combined With Pyrotinib and Chemotherapy in the Treatment of HER2 Positive Metastatic Breast Cancer Phase 2
Completed NCT04890327 - Web-based Family History Tool N/A
Terminated NCT04066790 - Pyrotinib or Trastuzumab Plus Nab-paclitaxel as Neoadjuvant Therapy in HER2-positive Breast Cancer Phase 2
Completed NCT03591848 - Pilot Study of a Web-based Decision Aid for Young Women With Breast Cancer, During the Proposal for Preservation of Fertility N/A
Recruiting NCT03954197 - Evaluation of Priming Before in Vitro Maturation for Fertility Preservation in Breast Cancer Patients N/A
Terminated NCT02202746 - A Study to Assess the Safety and Efficacy of the VEGFR-FGFR-PDGFR Inhibitor, Lucitanib, Given to Patients With Metastatic Breast Cancer Phase 2
Active, not recruiting NCT01472094 - The Hurria Older PatiEnts (HOPE) With Breast Cancer Study
Completed NCT06049446 - Combining CEM and Magnetic Seed Localization of Non-Palpable Breast Tumors
Withdrawn NCT06057636 - Hypnosis for Pain in Black Women With Advanced Breast Cancer: A Feasibility Study N/A
Recruiting NCT05560334 - A Single-Arm, Open, Exploratory Clinical Study of Pemigatinib in the Treatment of HER2-negative Advanced Breast Cancer Patients With FGFR Alterations Phase 2
Active, not recruiting NCT05501769 - ARV-471 in Combination With Everolimus for the Treatment of Advanced or Metastatic ER+, HER2- Breast Cancer Phase 1
Recruiting NCT04631835 - Phase I Study of the HS-10352 in Patients With Advanced Breast Cancer Phase 1
Completed NCT04307407 - Exercise in Breast Cancer Survivors N/A
Recruiting NCT03544762 - Correlation of 16α-[18F]Fluoro-17β-estradiol PET Imaging With ESR1 Mutation Phase 3
Terminated NCT02482389 - Study of Preoperative Boost Radiotherapy N/A
Enrolling by invitation NCT00068003 - Harvesting Cells for Experimental Cancer Treatments
Completed NCT00226967 - Stress, Diurnal Cortisol, and Breast Cancer Survival
Recruiting NCT06006390 - CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT06037954 - A Study of Mental Health Care in People With Cancer N/A
Recruiting NCT06019325 - Rhomboid Intercostal Plane Block on Chronic Pain Incidence and Acute Pain Scores After Mastectomy N/A