View clinical trials related to Brain Mapping.
Filter by:Background: - Studies have shown that animals such as monkeys and dogs have excellent sight and touch memory but perform poorly on sound memory tasks. Human brains have certain areas that are important for speaking and understanding language. These areas may be involved in sound and spoken word memory. Researchers want to study these areas of the brain to find out if the memory for sounds requires brain structures that are usually associated with language learning and are unique to humans. Objectives: - To use magnetic resonance imaging to study areas of the brain involved in sound memory. Eligibility: - Healthy right-handed volunteers between 18 and 50 years of age. They must be native English speakers and have completed high school. Design: - The study requires a screening visit and 1 or 2 study visits to the National Institutes of Health Clinical Center. - At the screening visit, volunteers will have a medical history taken. They will also have physical and neurological exams, and complete a questionnaire. Women of childbearing age will give a urine sample. Participants who have not had a magnetic resonance imaging (MRI) scan in the past year will have one at this visit. - At the second visit, participants will have tests of sound memory. They will listen to a set of nonsense words spoken through earphones and memorize the words. Then they will listen to the words again to judge if the words were part of the earlier list. Participants will have a 1 hour break, then do the sound memory test again. During the second test they will have repetitive transcranial magnetic stimulation (rTMS), which stimulates different regions of the brain. - If the group results from the testing sessions are positive, there will be a third visit. At this visit, participants will have a sound perception test. They will listen to words spoken through earphones and judge whether the words in the pair are the same or different. Participants will have rTMS during these tests as well.
Background: - People with epilepsy often have auditory processing disorders that affect their ability to hear clearly and may cause problems with understanding speech and other kinds of verbal communication. Researchers are interested in developing better ways of studying what parts of the brain are affected by hearing disorders and epilepsy, and they need better clinical tests to measure how individuals process sound. These tests will allow researchers to examine and evaluate the effects of epilepsy and related disorders on speech and communication. - A procedure called a magnetoencephalography (MEG) can be used to measure the electrical currents involved in brain activity. Researchers are interested in learning whether MEG can be used to detect differences in the processing of simple sounds in patients with epilepsy, both with and without hearing impairments. Objectives: - To measure brain activity in hearing impaired persons with epilepsy and compare the results with those from people with normal hearing and epilepsy as well as people with normal hearing and no epilepsy. This research is performed in collaboration with Johns Hopkins Hospital and epilepsy patients must be candidates for surgery at Johns Hopkins. Eligibility: - Individuals between 18 to 55 years of age who (1) have epilepsy and have hearing impairments, (2) have epilepsy but do not have hearing impairments, or (3) are healthy volunteers who have neither epilepsy nor hearing impairments. - Participants with epilepsy must have developed seizures after 10 years of age, and must be candidates for grid implantation surgery at Johns Hopkins Hospital.. Design: - This study will require one visit of approximately 4 to 6 hours. - Participants will be screened with a full physical examination and medical history, along with a basic hearing test. - Participants will have a magnetic resonance imaging (MRI) scan of the brain, followed by a MEG scan to record magnetic field changes produced by brain activity. - During MEG recording, participants will be asked to listen to various sounds and make simple responses (pressing a button, moving your hand or speaking) in response to sounds heard through earphones. The MEG procedure should take between 1 and 2 hours. - Treatment at NIH is not provided as part of this protocol.