View clinical trials related to Brain Injuries.
Filter by:This was a multicenter randomized controlled study of 98 severe Traumatic Brain Injury patients with tracheostomy. Patients enrolled were divided randomly into the observation group with Intermittent Oro-esophageal Tube Feeding or the control group with Nasogastric tube feeding for enteral nutrition support, respectively. Nutritional status, complications, decannulation of tracheostomy tubes and level of consciousness on day 1 and day 28 were recorded and compared.
The goal of this clinical trial is to explore Clinical Effect of Myofascial Release Therapy in Dysphagic Traumatic Brain injured Survivors. The main question it aims to answer is: • Can Myofascial Release Therapy improve swallowing function in Traumatic Brain injured Survivors? Patients will be randomly allocated into the control group or the experimental group, all under rehabilitation treatment, the experimental group will be given Myofascial Release Therapy. The study lasts 21 days for each patient. Researchers will compare the Functional Oral Intake Scale, Penetration-Aspiration Scale, Swallowing Quality of Life to see if the Myofascial Release Therapy can help improve the situation.
The main goal of this clinical trial is to check if the treatment is safe and well-tolerated. Researchers will compare the MR-301 active drug group with the placebo group to evaluate the safety and tolerability of the drug. Other measurements include assessing the patient's overall outcome, neurological responses, time spent in the intensive care unit, time in the hospital, and mortality. Participants will receive either MR-301 BID IV dosing or a matching placebo for a total of 3 weeks.
This was a multicenter randomized controlled study of 98 severe Traumatic Brain Injury patients with tracheostomy. Patients enrolled were divided randomly into the observation group with Intermittent Oro-esophageal Tube Feeding or the control group with Nasogastric tube feeding for enteral nutrition support, respectively. Nutritional status, complications, decannulation of tracheostomy tubes and level of consciousness on day 1 and day 28 were recorded and compared.
This was a multicenter randomized controlled study of 98 severe Traumatic Brain Injury patients with tracheostomy. Patients enrolled were divided randomly into the observation group with Intermittent Oro-esophageal Tube Feeding (n=50) or the control group with Nasogastric tube feeding (n=48) for enteral nutrition support, respectively. Nutritional status, complications, decannulation of tracheostomy tubes and level of consciousness on day 1 and day 28 were recorded and compared.
Patients with mild traumatic brain injury (mTBI) may experience spontaneous recovery within 7-10 days, but some continue to exhibit symptoms such as headache, dizziness, vertigo, poor concentration, and cognitive dysfunction. Effective treatments for these symptoms are currently lacking. Frequency Specific Microcurrent(FSM) has received approval from the U.S. FDA for use in neuroinflammatory conditions. Our study aims to evaluate the efficacy of FSM by using FSM device ,IS02LCDs Stimulator (Ru Yi Health ltd. Co,Taiwan R.O.C), on symptom improvement in 52 patients with mild TBI
Acute brain injury is a major cause of admission to intensive care units, as well as of mortality and morbidity, worldwide and for all age groups. With most patients surviving these injuries thanks to recent medical advances, society is facing not only the growing burden of disability, but above all the ethical issues involved in withdrawal of life-sustaining therapies (WSLT). To resolve this dilemma, effective treatment would be necessary, but this is hampered by our limited knowledge of the pathophysiological mechanisms of the natural history of coma, from onset to recovery. A more systematic description of coma awakening using a multimodal battery in intensive care unit patients would enable us to refine the awakening and re-emergence of consciousness and define appropriate biomarkers for selecting candidates in interventional studies. The investigators hypothesize that the current postulate of successive stages (i.e. from one clinical class to the next) of coma recovery is incomplete, as it does not take into account the rhythmic nature of wakefulness. The investigators propose that the best correlate of the natural history of coma recovery is a gradual shift from the loss of physiological cycles to a circadian rhythmicity of arousal indices (behavioural and neurophysiological) and a wide amplitude of metric fluctuations in assessing content richness.
Enhanced recovery after surgery (ERAS) is a strategy of perioperative management aimed to accelerate the rehabilitation of patients through various optimized perioperative managements as well as ongoing adherence to a patient-focused, multidisciplinary, and multimodal approach. Alleviating the injury and stress caused by surgery or disease is the core principle of ERAS, which has been shown to reduce complication rates after surgery, promote patient recovery, decrease hospital length of stay and reduce costs. ERAS has been widely applied in many surgical perioperative fields, and it has achieved remarkable effects. However, there are few applications of ERAS in neurosurgery, especially in clinical trials of neurocritical care patients. Therefore, the investigators attempt to conduct the study of ERAS in neurosurgical intensive patients using a series of optimized perioperative managements that have been verified to be effective by evidence-based medicine, and to evaluate the safety and effectiveness of ERAS in neurocritical care. The aim of this study is to explore the most suitable ERAS protocols to accelerate the postoperative rehabilitation process of neurocritical care patients, and to provide more evidence-based medicine for the effectiveness and safety of ERAS in neurosurgery.
In patients with hemianopsia following stroke or brain injury, we will determine if stimulating the visual field with images from a PowerPoint slide set can increase the visual field.
Transcranial Direct Current Stimulation (tDCS) is a non-invasive, painless brain stimulation treatment that uses low-intensity direct electrical currents to stimulate specific parts of the brain. Transcranial Direct Current Stimulation (tDCS) can both facilitate anodic stimulation and inhibit cathodic stimulation specific brain areas since many neurological and psychiatric disorders are connected to hypoactivity or hyperactivity in specific areas of the nervous system. This phenomenon is based on two processes: the reorganization of functional neural circuits and their reconstruction. In light of the studies mentioned above, it is presumed that Transcranial Direct Current Stimulation (tDCS) can be a valuable tool to facilitate the process of neuroplasticity in individuals with chronic neurological diseases and in patients with impaired consciousness following severe brain injury. A previous study demonstrated that a single session of transcranial direct current electrical stimulation could temporarily improve signs of consciousness in patients in a minimally conscious state (MCS)