Clinical Trials Logo

Brain Injuries, Traumatic clinical trials

View clinical trials related to Brain Injuries, Traumatic.

Filter by:

NCT ID: NCT06321146 Not yet recruiting - Clinical trials for Brain Injuries, Traumatic

Evaluation of EEG Power Spectrum in Patients With Traumatic Coma

EPIC
Start date: May 1, 2024
Phase:
Study type: Observational

Development of objective, reliable, and convenient assessment methods of disorders of consciousness is crucial. We aim to conduct multicenter prospective observational study and non-invasively collect EEG from patients with traumatic coma to analyze the sequential characteristics of EEG power spectrum, and explore their prognostic value for consciousness recovery.

NCT ID: NCT06319638 Not yet recruiting - Clinical trials for Traumatic Brain Injury

Efficacy of Stellate Ganglion Block in Traumatic Brain Injury Patients

Start date: May 2024
Phase: N/A
Study type: Interventional

The goal of this or clinical trial is to explore efficacy of stellate ganglion block on dysphagia and activities of daily living in Traumatic Brain Injury Patients. The main question it aims to answer are: Can stellate ganglion block improve the dysphagia and activities of daily living in Traumatic Brain Injury Patients. Traumatic Brain Injury Patients will be divided into the the control group and observation group evenly. All the patients were provided with routine therapy, while the patients in the observation group were given stellate ganglion block. The swallowing function, and activities of daily living of the two groups of patients before and after treatment were evaluated.

NCT ID: NCT06311604 Not yet recruiting - Clinical trials for Traumatic Brain Injury

Evaluation of the Safety of Inhaled Sedation With Isoflurane in Head Trauma Patients

IsoSAFE
Start date: April 1, 2024
Phase: N/A
Study type: Interventional

Intensive care management of patient with severe traumatic brain injury (TBI) includes deep and prolonged sedation with intravenous hypnotics (propofol, midazolam, ketamine) in combination with opioids to prevent and/or treat episodes of intracranial hypertension. However, some patients may develop tachyphylaxis with a gradual increase of administered intravenous hypnotics and opioids to maintain the same level of sedation. This situation leads to a failure in controlling intracranial pressure (ICP) and/or to the risk of adverse effects due to high-dose sedatives: haemodynamic instability, prolonged mechanical ventilation, neuromyopathy, delirium, withdrawal syndrome. Halogenated agents (Isoflurane, Sevoflurane) are a class of hypnotics routinely used in the operating room. However, doses used in surgical patients (> 1 Minimal Alveolar Concentration, MAC) are not suitable in neuro-intensive care unit (ICU) patients at risk of intracranial hypertension because of the cerebral vasodilator effects of halogenated agents at this dosage, hence the risk of high ICP and compromised cerebral perfusion pressure. The use of halogenated agents has been recently possible in the ICU through dedicated medical devices (Sedaconda ACD, Mirus). Recommended dosage are lower in the ICU, i.e. 0.3-0.7 MAC, because of their association with intravenous hypnotics and the absence of surgical stimuli. Several clinical studies in general ICUs showed improved sedation quality, reduced duration of mechanical ventilation, faster arousal and shorter extubation time, and lower costs in halogenated group compared with control group receiving midazolam or propofol. At low doses, the effects on ICP and intracerebral haemodynamics of halogenated agents are minor according to the available literature. In addition, beneficial effects were found on cerebral ischaemic volume in animal models treated with halogenated agents. However, there is a need to explore the benefit-risk ratio of the use of halogenated agents in the severe TBI population. The investigator hypothesise that 0.7 MAC Isoflurane can be administered in this population without deleterious effect on ICP.

NCT ID: NCT06304116 Not yet recruiting - Clinical trials for Traumatic Brain Injury

Effect of Lidocaine Block in Traumatic Brain Injury

Start date: March 2024
Phase: N/A
Study type: Interventional

The goal of this or clinical trial is to explore efficacy of stellate ganglion block on dysphagia and activities of daily living in Traumatic Brain Injury Patients. The main question it aims to answer are: Can stellate ganglion block improve the dysphagia and activities of daily living in Traumatic Brain Injury Patients. Traumatic Brain Injury Patients will be divided into the the control group and observation group evenly. All the patients were provided with routine therapy, while the patients in the observation group were given stellate ganglion block. The swallowing function, and activities of daily living of the two groups of patients before and after treatment were evaluated.

NCT ID: NCT06293300 Not yet recruiting - Clinical trials for Traumatic Brain Injury

Understanding and Treating Traumatic Brain Injury (TBI) Associated Photophobia With Botulinum Toxin Type A (BoNT-A)

Start date: August 1, 2024
Phase: Phase 2
Study type: Interventional

The purpose of this research is to understand and treat Traumatic Brain Injury (TBI) associated photophobia (light sensitivity) and its impact on visual function.

NCT ID: NCT06292585 Not yet recruiting - Clinical trials for Traumatic Brain Injury

Acute EpiDural Hematoma Treated With Middle Meningeal Artery Embolization: a Randomized Trial (AEDH-MT)

Start date: March 2024
Phase: N/A
Study type: Interventional

A prospective, multicenter, randomized controlled, open-label, blinded endpoint evaluation study.

NCT ID: NCT06282965 Not yet recruiting - Clinical trials for Traumatic Brain Injury

Safety and Efficacy of Angiotensin (1-7) in Persons With Moderate to Severe Traumatic Brain Injury

ANGel T
Start date: March 2024
Phase: Phase 1/Phase 2
Study type: Interventional

The goal of this clinical trial is to test the safety of the drug Angiotensin (1-7) and learn whether it works well as a treatment in people who have suffered a moderate to severe traumatic brain injury (TBI). The main questions this trial aims to answer are: - Is Angiotensin (1-7) safe? - Does Angiotensin (1-7) improve mental functioning and reduce physical signs of brain damage in people who have suffered a moderate to severe TBI? Participants will: - Complete 21 days of study treatment consisting of a once-daily injection. - Provide blood samples. - Undergo two magnetic resonance imaging (MRI) scans of the brain. - Complete specific tasks and questionnaires that allow researchers to evaluate the participant's brain and psychological functioning. Researchers will compare three groups: two groups that receive different doses of Angiotensin (1-7) and one group that receives a look-alike treatment with no active drug. This will allow researchers to see if the drug has any negative effects and whether it improves mental functioning and physical signs of brain damage after a TBI.

NCT ID: NCT06276894 Not yet recruiting - Clinical trials for Traumatic Brain Injury

Functional Near-Infrared Spectroscopy (fNIRS) Assessing Neural Activity During Virtual Reality Walking Intervention

fNIRS
Start date: March 1, 2024
Phase: N/A
Study type: Interventional

The purpose of this study is to evaluate the safety and feasibility of using a portable neuroimaging device called functional near-infrared spectroscopy (fNIRS) to successfully analyze fNIRS data in individuals with chronic TBI during treadmill training augmented with VR.

NCT ID: NCT06264518 Not yet recruiting - Clinical trials for Traumatic Brain Injury

An Observational Exploration of Clinical Trials Targeting Traumatic Brain Injury

Start date: March 2025
Phase:
Study type: Observational

Clinical study participation has historically been heavily biased toward specific demographics. Several people will be invited to enroll in this study so that it may collect a variety of data about traumatic brain injury clinical trial experiences and identify barriers to participation as well as the causes of participants' failure or withdrawal. People with traumatic brain injury who are invited to take part in medical research will benefit from the analysis of the data.

NCT ID: NCT06262061 Not yet recruiting - Clinical trials for TBI (Traumatic Brain Injury)

Propranolol for the Treatment of Traumatic Brain Injury

Start date: March 2024
Phase: Early Phase 1
Study type: Interventional

Traumatic brain injury (TBI) is a leading cause of global disease and directly affects over 1.5 million Canadians, with 165 000 TBIs occurring yearly in Canada. Despite the burden of TBIs, there are limited treatment options available and current treatments generally focus on supportive care. The aim of TBI treatment is reduce inflammation and damage occurring after the TBI (secondary injury). Beta- blockers (BBs) are medications commonly used to block the actions of endogenous catecholamines- hormones that are thought to contribute to secondary injury within brain tissue. This reduces metabolic demand in the vulnerable, injured brain. BBs have been studied in several retrospective trials and one single-center, non- blinded randomized controlled study. These results point towards a benefit to the use of BBs in TBI but need to be confirmed in a rigorous manner before they are widely adopted. The current study aims to assess the feasibility of a single centre randomized controlled trial of BBs versus placebo to treat moderate to severe TBI. This feasibility trial will inform the planning of a large multi-center study powered to detect a difference in cognitive outcomes and mortality. It also will allow the investigators to gather biologic samples for measuring serum catecholamines and inflammatory mediators to better understand the basic science mechanisms of BBs in this patient population; and to assess the feasibility of using the Cambridge Battery to assess cognitive outcomes of trial participants.