View clinical trials related to Brain Injuries, Traumatic.
Filter by:The purpose of this study is to examine the role of a Mechanical Diagnosis and Therapy (MDT) examination in identifying participants diagnosed with concussion who display a directional preference compared to who don't display a directional preference.
The overall aim of the study is to advance the knowledge on the characterization and underlying pathophysiological mechanisms of persistent post-traumatic headache (PTH) with a direct impact on the ability to diagnose and manage PTH effectively. The investigators also aim to evaluate the efficacy of repetitive transcranial magnetic stimulation (rTMS), a novel intervention on PTH.
The purpose of this study is to examine measures of GrimAge clock in SOF members undergoing treatment for PTSD/TBI using CSB.
Traumatic Brain Injury (TBI) is a devastating condition and a leading cause of long-term disability. Every patient with TBI has a different type of injury and is treated differently from hospital to hospital making it very difficult to identify the most effective treatments. The current study focuses on the most severe types of TBI that require hospital ICU care - moderate to severe TBI (m-sTBI). The overall aim of this study is to collect data about how different hospitals manage m-sTBI in Australia, and to quantify the variability that likely exists. Recovery at 6 months post-injury will be collected to allow a better understanding on how different injuries and treatments affect long term outcomes.
Role of immunonutrition in modulating the lung microbiota of intubated TBJ patients and how this interaction may affect the infections and outcomes. For these reasons, the aims of our study are the evaluation of the impact of immunonutrition on the lung microbiota and the relationship between lung microbiota and infection in TBJ patients in ICU.
This study's objective is to determine the safety, feasibility and efficacy of prolonged automated robotic TCD monitoring in critically ill patients with severe TBI across multiple clinical sites with varying levels of TCD availability and experience
Traumatic brain injury (TBI) is an altered brain function caused by an external force, which may annually have 69 million incidence cases all over the world. Increasing evidence suggests that TBI may be a major risk of beta amyloid (Aβ)-associated neurodegenerative disorders, such as Alzheimer's disease, frontotemporal dementia, and Parkinson's disease. Investigations from brain imaging studies revealed that Aβ density maps of TBI patients overlapped with those with Alzheimer's disease, and increased Aβ density not only associated with prolonged TBI duration but also associated with decreased white matter integrity. It has been suggested that the axonal injury and cerebrovascular dysfunction due to TBI may associate with the elevated level of Aβ peptides. The increasing accumulation in Aβ due to TBI may contribute to the initiation of the pathological alterations in neurodegeneration diseases. Recent animal studies suggest that acupuncture may promote regeneration of nerves in injured tissues and reduce the concentration of Aβ in brain. Moreover, recent clinical trials also indicate that acupuncture may improve the vascular cognitive impairment due to cerebral small vessel disease. Thus, acupuncture treatment on TBI may not only be of benefit for the TBI recovery but also act to interrupt the pathological changes in these neurodegenerative diseases.
This study first aims to validate the feasibility of a multimodal 5-day 20-minute tACS protocol in subacute brain-injured patients with a disorder of consciousness during their ICU stay, and conduct a clinical pilot study (validation phase). Upon completion of this validation phase and according to obtained results, a randomized clinical trial will be conducted to compare the effects of the 5-day active 10Hz-tACS protocol with a 5-day sham-tACS protocol on brain dynamics modulation. This study will also compare intervention conditions on recovery of consciousness, cognition and function using short-term and long-term measurements.
The purpose of this study is to determine if experimental drug treatment improves recovery after TBI as compared to a control (placebo) group. Changes in recovery will be measured throughout the study. The study drugs listed below are approved by the U.S. Food and Drug Administration (FDA) but are being used "off-label" in this study. This means that the drugs are not currently approved to treat TBI.
This project will measure concussion symptoms, biological markers, and academic and social factors across the first year postconcussion to develop a model that enables early identification of and symptom management for children at higher risk for persistent postconcussive symptoms. Findings will provide novel insights into the longer-term effects of concussion on children's physical, psychological, and social well-being and support the development of personalized healthcare and school-based plans to reduce disparities in children's ability to return-to-learn and -play and improve postconcussion quality of life.