View clinical trials related to Brain Injuries, Traumatic.
Filter by:This study is a randomized Phase 2 trial to determine the feasibility of real-time electrocorticographic monitoring of spreading depolarizations (SD) to guide implementation of a tier-based protocol of intensive care therapies, aimed at SD suppression, for the management of patients who have undergone acute operative treatment of severe traumatic brain injury.
Rapidly evolving virtual reality (VR) and augmented reality (AR) technologies are being incorporated by many large-scale industries, and the medical field is no exception. One area that has gained significant attention in recent years is virtual rehabilitation which allows physical therapists to leverage state-of-the-art immersive virtual environments to uniquely address functional deficits in patients who are unresponsive to conventional treatment techniques. Advanced VR and AR technologies are now available in commercially available small-scale, mobile head-mounted displays which can be readily used in outpatient clinic settings and possibly at home. The aim of this study is to determine whether advanced VR- and AR-based physical therapy improves functional status and reduces self-reported symptoms in individuals experiencing vestibular disorders secondary to mild traumatic brain injury (mTBI). Study participants will be randomized into treatment groups: 1) conventional therapy, 2) therapy performed using a large-scale VR system (the Computer Assisted Rehabilitation Environment or CAREN), 3) therapy performed using a mobile AR. Upon completion of treatment, groups will be compared to determine functional outcome improvements with respect to static and dynamic balance as well as reduction of vestibular symptoms.
In this study, our aim is to investigate the role of tranexamic acid for modulating the inflammation in patients with traumatic brain injury (TBI).
After injury, survivors of msTBI depend on informal family caregivers. Upwards of 77% of family caregivers experience poor outcomes, such as adverse life changes, poor health related quality of life, and increased depressive symptoms. Caregivers frequently report minimal support or training to prepare them for their new role. Periods of care transitions, such as ICU discharge, are most difficult. The majority (93%) of previously developed caregiver and caregiver/survivor dyad interventions after msTBI focus on providing information or practical skills to either survivors, or to long-term caregivers (>6 months post injury), rather than education, support, and skill-building that the new caregiver may use proactively that will benefit the dyad acutely after injury. The Aims of this proposal are to: (1) Determine feasibility, satisfaction, and data trends of CG-Well; and (2) Understand how baseline psychosocial risk factors affect response to CG-Well compared to an Information, Support, and Referral control group. To accomplish this, I will first enroll 6-10 caregivers and tailor CG-well until each finds the intervention acceptable, appropriate, and feasible. I will then enroll 100 (50/group) dyads and determine satisfaction ratings, recruitment, retention, and treatment fidelity of CG-Well. Additionally, I will determine if caregivers report reductions in depressive symptoms and improvements in life changes as a result of improvements in task difficulty and threat appraisal in CG-Well compared to ISR at six months. Information obtained in Aims 1 and 2 will be used to plan a larger Phase III trial of CG-Well. Completing these Aims and the training plan will improve outcomes of caregivers and downstream outcomes of survivors of msTBI, and provide me with the skillset necessary to become an independent researcher who can develop and test high-impact, high-fidelity, sustainable interventions.
Hyponatremia (HN) is the most common electrolytic disorder in the traumatic brain injury (TBI) population, found in 17 to 51% of patients according to the series. Two etiologies predominate in the literature, the Syndrome of Inappropriate Anti Diuretic Hormone (SIADH) and the Cerebral Salt Waste Syndrome (CSW), but none has been precisely described in terms of epidemiology, risk factors or severity. Moreover, SIADH and CSH were often confused in previous works. The main goal of our study is to assess retrospectively prevalence, severity, time to onset, length, risk factors of HN in a large population of TBI patients, as well as treatment modalities and prognosis. A specific distinction was performed between SIADH or CSW.
The purpose of this study was to observe the relationship between the changes of circulating extracellular vesicles and disease development and outcome in patients with traumatic brain injury, and to find early serum markers and potential intervention targets for disease monitoring in patients with traumatic brain injury. In addition, explore the source of extracellular vesicles as much as possible to prepare for subsequent basic experiments.
Sequences of muscle tendon vibrations allow to reproduce the sensory feedback during movement like locomotion and kinaesthesia. It is known that such a treatment promotes motor recovery after stroke assuming that it enhances neuroplasticity. The aim of the research is to study the activity in cerebrospinal circuitry to evaluate the neuroplastic changes during and after instrumented proprioceptive rehabilitation relying on sequences of muscle vibration in subacute stroke stages.
The purpose of this study is to assess a balance training program to see if it can be helpful to avoid falls in people who have had traumatic brain injuries (TBIs). The study will include 3 groups: TBI Intervention group , TBI Control Group, and healthy control group. TBI Intervention group - These individuals will participate in 16 anticipatory postural adjustments (APA) and compensatory postural adjustments (CPA) training sessions using the Neurocom Balance Platform. Each session will last for 1 hour. During the APA portion, participants will be provided with a visual cue on the front screen in the form of a countdown timer showing the remaining seconds to the onset of the upcoming perturbation. This information will allow an opportunity for the participant to adjust their posture to handle the upcoming perturbation in the best possible way and also train them to anticipate upcoming disturbances and execute corrective motor outputs. In CPA, after a 5 second pause, the platform will oscillate at 1 Hz, with a constant amplitude, in the anterior-posterior direction for 50 seconds, followed by an additional 5 second quiet period. The participant will wear a safety harness at all times and a spotter will be present at all times. TBI Control Group- They do not receive any intervention. healthy control group- They do not receive any intervention. All three groups will participate in two data collection sessions: Baseline and follow-up. At baseline and follow-up, we will collect functional, clinical, biomechanical, and physiological metrics. During training and data collection, a spotter will be present at all times to prevent falls and participants will be allowed as much rest as needed by them..
Our successful R01 discovered 1) the neural mechanistic difference between typically occurring convergence insufficiency (TYP-CI) and binocularly normal controls and 2) the underlying mechanism of office-based vergence and accommodative therapy (OBVAT) that is effective in remediating symptoms. Adolescent and young adult concussion is considered a substantial health problem in the United States where our team has shown that about half of patients with persistent post-concussion symptoms have convergence insufficiency (PPCS-CI), causing significant negative impact associated with reading or digital screen-related activities, and is believed to be one factor causing delayed recovery impacting return to school, sports, or work. The results of this randomized clinical trial will impact the lives of adolescents and young adults with PPCS-CI to guide professionals on how to manage and treat those with PPCS-CI by 1) comparing the differences between PPCS-CI and TYP-CI, 2) discovering the neural mechanism of OBVAT for PPCS-CI compared to standard-community concussion care, and 3) determining the effectiveness of 12 one-hour sessions compared to 16 one-hour sessions of OBVAT.
Traumatic brain injury (TBI) is a significant problem for U.S. Hispanic children. Compared to non-Hispanic children, Hispanic children have higher long-term disability and lower health related quality of life, even though differences are not present at hospital discharge. Rehabilitation decreases disability, but needs timely initiation, and long treatments in hospitals, community healthcare facilities and schools. Parents play a key role in their child's recovery. Hispanic parents face additional barriers to initiate and maintain outpatient treatments. They report knowledge gaps in TBI-education, community, and school support systems; language and health literacy barriers. The investigators developed, a bilingual bicultural theory-based program for Hispanic families consisting of Brain Injury Education and outpatient care Navigation (1st BIEN). It integrates in-person education enriched by video content delivered through mobile phones, with navigation during transitions to outpatient care and school return. The pilot established feasibility and acceptability of the program. This randomized control trial will determine efficacy to maintain long-term adherence to rehabilitation and reduce disability. It will enroll 150 parent-child dyads: children (6-17 y), with mild-complicated, moderate-severe TBI in 5 centers in Washington, Texas, Dallas, Utah and Oregon and their parents. Intervention group parents receive: One in-person education session, plus bi-weekly videos tailored to the child's TBI and therapies; and, 3-months of bilingual outpatient care navigation. Attention control parents receive one in person-education session, monthly well-child texts and usual institutional follow up care. Primary outcome is treatment adherence at 6 months post-discharge measured by percentage of follow-up appointments attended during the prescribed time at hospitals, and community care facilities. Secondary outcomes are functional status of the child using PROMIS parental report measures; and parental health literacy, self-efficacy, and mental health at 3, 6, and 12 months after discharge. Child's academic performance will be assessed using school records. The study evaluates a flexible and scalable intervention using mobile phones to aid transitions of care, improve treatment adherence and TBI outcomes. It addresses the needs of an understudied population and can serve as a model for TBI family centered care for at risk groups.