Blood Pressure Clinical Trial
Official title:
The Venous Distension Reflex and Orthostatic Hypertension
This research is being done to find out whether distension of veins in legs will cause a rise in blood pressure (orthostatic hypertension).
In humans, two-thirds of the blood volume is contained within the venous vasculature. Because of this, changes in peripheral blood volume and alterations in the mechanical properties of peripheral veins can greatly impact cardiac filling, cardiac output and blood pressure (BP) responses to physiologic stress. Work from our laboratory over the past seven years has shown that local upper limb venous distension via volume infusion into an occluded arm (i.e. volume infusion model) or applying negative pressure to an occluded leg (limb suction experimental model) leads to an acute and dramatic increase in Muscle Sympathetic Nerve Activity (MSNA; an index of sympathetic activity directed to skeletal muscle) and BP in humans. Since this venous distension reflex (VDR) differs physiologically from the other reflex systems, and since this system may play a critical role in orthostatic BP control, we believe that it is a significant area of study. The investigators speculate that VDR from lower limbs contributes to the autonomic adjustment to orthostatic stress. To examine the VDR in lower limbs, an arterial occlusion cuff on the mid-thigh was inflated (250 mm mercury; Hg). Then, limb suction (-100 mmHg) was applied ~10-15 cm below the level of arterial occlusion (i.e. below the knee). MSNA was measured in the opposite control limb. When suction was applied below the level of arterial occlusion (i.e. occlusion + suction), both MSNA and mean arterial BP (MAP) increased. In control trials, arterial occlusion without limb suction (i.e. occlusion alone) did not increase MSNA. Plethysmographic data showed calf circumference increased without detectable arterial pulsations. Pilot data suggest that the fluid shifts from the occluded but non-depressurized zone of the limb (i.e. between the cuff and knee) into the occluded and depressurized region of the limb within the tank. Thus, the results suggest that the VDR was engaged with this limb suction experimental model. These experimental models "selectively" alter peripheral venous volume as the investigators measure sympathetic reflex responses. This approach is innovative and allows examination of a previously overlooked autonomic reflex in conscious humans. If these studies confirm the hypotheses, the obtained data would challenge the present teaching regarding how the sympathetic nervous system is engaged in humans during postural stress. In ~2.5-10% of the population, BP rises as the person stands. This has been termed orthostatic hypertension, and is different from the "normal" sustained BP response when a person stands. The incidence of orthostatic hypertension may increase with aging (~2.4% for 45-64 years old and ~8.7% for >70 years old). Orthostatic hypertension is a risk factor for the development of stroke, left ventricular hypertrophy, and chronic kidney disease. It is unclear why BP rises with standing in some individuals. Some investigators have speculated that orthostatic hypertension is due to exaggerated baroreceptor withdrawal with standing. Others have speculated that this response is due to an increase in sympathetic output. It has been noted that some patients with orthostatic hypertension have increased venous pooling in their lower legs. Based these data, the investigators postulate that heightened engagement of the VDR reflexly increases MSNA and also serves to reset the aortic baroreflex. In this protocol, the investigators will determine if the MSNA response to leg suction is heightened in the individuals with elevated standing BP, and examine if the baroreflex is altered in these individuals. The investigators will also examine if external pressure on lower limbs, which limits the venous pooling in the lower limbs, will attenuate the increase in BP during standing in those individuals. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT03255187 -
Effect of Dietary Supplemental Fish Oil in Alleviating Health Hazards Associated With Air Pollution
|
N/A | |
Completed |
NCT05997303 -
Continuous Norepinephrine Administration and Blood Pressure Stability During Anesthetic Induction
|
N/A | |
Recruiting |
NCT04575194 -
Study of the Cardiometabolic Effects of Obesity Pharmacotherapy
|
Phase 4 | |
Completed |
NCT03918486 -
Caretaker vs. Routine Blood Pressure Sphygmomanometer
|
||
Completed |
NCT03410342 -
The Effects of Types of Fruits and Vegetables on Vascular Function
|
N/A | |
Active, not recruiting |
NCT05062161 -
Sleep Duration and Blood Pressure During Sleep
|
N/A | |
Not yet recruiting |
NCT04087070 -
Blood Pressure Estimation Using Noninvasive Biosignals During Pediatric Anesthesia
|
||
Completed |
NCT03294928 -
Arterial Waveform Analysis Applying Different Positive End-Expiratory Pressure (PEEP) Levels in Healthy Volunteers
|
N/A | |
Completed |
NCT03859934 -
Metabolic Effects of Melatonin Treatment
|
Phase 1 | |
Completed |
NCT03997461 -
Comparison of Arterial Tonometry Sensor With Standard Oscillometric Blood Pressure Monitoring Device
|
N/A | |
Completed |
NCT03290716 -
Diet, ExerCIse and carDiovascular hEalth (DECIDE) - Salt Reduction Strategies for the Elderly in Nursing Homes in China
|
N/A | |
Recruiting |
NCT05196048 -
Blood Pressure Sensor of Watch-type Device With ECG Technology
|
||
Recruiting |
NCT06460233 -
Blood Pressure Changes After Bariatric Surgery
|
||
Terminated |
NCT03325933 -
Resistance Training and Cardiometabolic Health
|
N/A | |
Not yet recruiting |
NCT06405880 -
Pharmacist Case Finding and Intervention for Vascular Prevention Trial
|
N/A | |
Completed |
NCT02924454 -
Effects of Lipid Emulsion on the Pharmacokinetic and Pharmacodynamic Properties of Metoprolol.
|
Phase 4 | |
Completed |
NCT02451059 -
Reducing Socioeconomic Disparities in Health at Pediatric Visits
|
N/A | |
Active, not recruiting |
NCT02670967 -
Effects of Soluble Fiber on Blood Pressure: A Meta-analysis of Randomly-controlled Trials
|
N/A | |
Completed |
NCT02271633 -
Nitrate Supplementation; Source
|
Phase 4 | |
Completed |
NCT02239744 -
Intervention Study on the Health Impact of Air Filters in Chinese Adults
|
N/A |