Bipolar Disorder Clinical Trial
Official title:
Pilot Study of Glycine Augmentation in Carriers of a Mutation in the Gene Encoding Glycine Decarboxylase
Verified date | September 2017 |
Source | Mclean Hospital |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The purpose of this study is to assess the efficacy of oral glycine as an augmentation
strategy in two psychotic patients with a triplication (4 copies) of the gene glycine
decarboxylase (GLDC). Subjects will first undergo a double-blind placebo-controlled clinical
trial in which one 6-week arm will involve glycine (maximum daily dose of 0.8 g/kg,
administered on a TID dosing schedule) and one 6-week arm will involve placebo. A 2-week
period of no treatment will occur between treatment arms. A 6-week period of open-label
glycine (maximum daily dose of 0.8 g/kg, administered on a TID dosing schedule) will follow
the double-blind placebo-controlled clinical trial. Prior to the double-blind
placebo-controlled clinical trial and at the end of the open-label glycine trial, the
following procedures will be carried out: structural MRI (3T), Proton 1H MRS (4T), fMRI (3T),
steady-state visual evoked potentials, and EEG. Positive, negative, and affective symptoms
and neurocognitive function as well as plasma levels of large neutral and large and small
neutral and excitatory amino acids and psychotropic drug levels will be assessed
periodically. In addition, 1H MRS (4T) for 2 hours after a single oral dose of a
glycine-containing drink will be assessed at baseline. Pharmaceutical grade glycine powder
(Ajinomoto) or placebo will be dissolved in 20% solution and prepared by the McLean Hospital
Pharmacy.
Because the results of the double-blind placebo-controlled and open-label glycine treatment
arms showed substantial clinical benefit to the participants, the study has been extended to
include six months of chronic open-label glycine in order to determine 1) whether the
clinical benefits achieved within 6 weeks previously recur, 2) the clinical benefits are
lasting, and 3) additional clinical benefits occur with longer exposure. The glycine for this
extension will be provided by Letco Medical.
The investigators hypothesize that mutation carriers will have reduced endogenous brain
glycine and GABA levels and increased brain glutamate and glutamine levels. Glycine
administration will increase brain glycine in the two carriers, but to a lesser extent than
in non-carrier family members and controls.
The investigators hypothesize reduced activation of magnocellular pathways and abnormal ERPs
modulated by NMDA in mutation carriers compared with non-carrier family members and controls.
The investigators hypothesize that glycine, but not placebo, will improve positive, negative
and affective symptoms as well as neurocognitive function.
The investigators also hypothesize that open-label glycine will improve clinical and
cognitive functioning, will partially normalize decreased baseline glycine and GABA and
increased glutamate and glutamine, and will partially normalize magnocellular pathway
activation and abnormal evoked potentials.
Status | Completed |
Enrollment | 2 |
Est. completion date | May 31, 2017 |
Est. primary completion date | May 31, 2017 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 65 Years |
Eligibility |
Inclusion Criteria: - Triplication of glycine decarboxylase gene Exclusion Criteria: - Normal glycine decarboxylase copy number |
Country | Name | City | State |
---|---|---|---|
United States | McLean Hospital | Belmont | Massachusetts |
Lead Sponsor | Collaborator |
---|---|
Mclean Hospital | National Institute of Mental Health (NIMH) |
United States,
Buchanan RW, Javitt DC, Marder SR, Schooler NR, Gold JM, McMahon RP, Heresco-Levy U, Carpenter WT. The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am J Psychiatry. 2007 Oct;164(10):1593-602. — View Citation
Butler PD, Schechter I, Zemon V, Schwartz SG, Greenstein VC, Gordon J, Schroeder CE, Javitt DC. Dysfunction of early-stage visual processing in schizophrenia. Am J Psychiatry. 2001 Jul;158(7):1126-33. — View Citation
Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol. 2006 Jul-Aug;26(4-6):365-84. Epub 2006 Jun 14. Review. — View Citation
Duncan EJ, Szilagyi S, Schwartz MP, Bugarski-Kirola D, Kunzova A, Negi S, Stephanides M, Efferen TR, Angrist B, Peselow E, Corwin J, Gonzenbach S, Rotrosen JP. Effects of D-cycloserine on negative symptoms in schizophrenia. Schizophr Res. 2004 Dec 1;71(2-3):239-48. Review. — View Citation
Erhardt S, Schwieler L, Nilsson L, Linderholm K, Engberg G. The kynurenic acid hypothesis of schizophrenia. Physiol Behav. 2007 Sep 10;92(1-2):203-9. Epub 2007 May 21. — View Citation
Evins AE, Fitzgerald SM, Wine L, Rosselli R, Goff DC. Placebo-controlled trial of glycine added to clozapine in schizophrenia. Am J Psychiatry. 2000 May;157(5):826-8. — View Citation
Goff DC, Henderson DC, Evins AE, Amico E. A placebo-controlled crossover trial of D-cycloserine added to clozapine in patients with schizophrenia. Biol Psychiatry. 1999 Feb 15;45(4):512-4. — View Citation
Goff DC, Tsai G, Manoach DS, Flood J, Darby DG, Coyle JT. D-cycloserine added to clozapine for patients with schizophrenia. Am J Psychiatry. 1996 Dec;153(12):1628-30. — View Citation
Heinzen EL, Radtke RA, Urban TJ, Cavalleri GL, Depondt C, Need AC, Walley NM, Nicoletti P, Ge D, Catarino CB, Duncan JS, Kasperaviciute D, Tate SK, Caboclo LO, Sander JW, Clayton L, Linney KN, Shianna KV, Gumbs CE, Smith J, Cronin KD, Maia JM, Doherty CP, Pandolfo M, Leppert D, Middleton LT, Gibson RA, Johnson MR, Matthews PM, Hosford D, Kälviäinen R, Eriksson K, Kantanen AM, Dorn T, Hansen J, Krämer G, Steinhoff BJ, Wieser HG, Zumsteg D, Ortega M, Wood NW, Huxley-Jones J, Mikati M, Gallentine WB, Husain AM, Buckley PG, Stallings RL, Podgoreanu MV, Delanty N, Sisodiya SM, Goldstein DB. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am J Hum Genet. 2010 May 14;86(5):707-18. doi: 10.1016/j.ajhg.2010.03.018. Epub 2010 Apr 15. — View Citation
Heresco-Levy U, Ermilov M, Lichtenberg P, Bar G, Javitt DC. High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biol Psychiatry. 2004 Jan 15;55(2):165-71. — View Citation
Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Horowitz A, Kelly D. Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. Br J Psychiatry. 1996 Nov;169(5):610-7. — View Citation
Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry. 1999 Jan;56(1):29-36. — View Citation
Javitt DC, Silipo G, Cienfuegos A, Shelley AM, Bark N, Park M, Lindenmayer JP, Suckow R, Zukin SR. Adjunctive high-dose glycine in the treatment of schizophrenia. Int J Neuropsychopharmacol. 2001 Dec;4(4):385-91. — View Citation
Javitt DC. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol. 2007;78:69-108. Review. — View Citation
Jensen JE, Licata SC, Ongür D, Friedman SD, Prescot AP, Henry ME, Renshaw PF. Quantification of J-resolved proton spectra in two-dimensions with LCModel using GAMMA-simulated basis sets at 4 Tesla. NMR Biomed. 2009 Aug;22(7):762-9. doi: 10.1002/nbm.1390. — View Citation
Kaufman MJ, Prescot AP, Ongur D, Evins AE, Barros TL, Medeiros CL, Covell J, Wang L, Fava M, Renshaw PF. Oral glycine administration increases brain glycine/creatine ratios in men: a proton magnetic resonance spectroscopy study. Psychiatry Res. 2009 Aug 30;173(2):143-9. doi: 10.1016/j.pscychresns.2009.03.004. Epub 2009 Jun 24. — View Citation
Lane HY, Liu YC, Huang CL, Chang YC, Liau CH, Perng CH, Tsai GE. Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol Psychiatry. 2008 Jan 1;63(1):9-12. Epub 2007 Jul 20. — View Citation
Lin CH, Lane HY, Tsai GE. Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav. 2012 Feb;100(4):665-77. doi: 10.1016/j.pbb.2011.03.023. Epub 2011 Apr 1. Review. — View Citation
Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S, Cichon S, Corvin A, Gary S, Gershon ES, Gill M, Karayiorgou M, Kelsoe JR, Krastoshevsky O, Krause V, Leibenluft E, Levy DL, Makarov V, Bhandari A, Malhotra AK, McMahon FJ, Nöthen MM, Potash JB, Rietschel M, Schulze TG, Sebat J. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron. 2011 Dec 22;72(6):951-63. doi: 10.1016/j.neuron.2011.11.007. — View Citation
Martínez A, Hillyard SA, Dias EC, Hagler DJ Jr, Butler PD, Guilfoyle DN, Jalbrzikowski M, Silipo G, Javitt DC. Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging. J Neurosci. 2008 Jul 23;28(30):7492-500. doi: 10.1523/JNEUROSCI.1852-08.2008. Erratum in: J Neurosci. 2008 Sep;28(37):9319. — View Citation
McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S, Perkins DO, Dickel DE, Kusenda M, Krastoshevsky O, Krause V, Kumar RA, Grozeva D, Malhotra D, Walsh T, Zackai EH, Kaplan P, Ganesh J, Krantz ID, Spinner NB, Roccanova P, Bhandari A, Pavon K, Lakshmi B, Leotta A, Kendall J, Lee YH, Vacic V, Gary S, Iakoucheva LM, Crow TJ, Christian SL, Lieberman JA, Stroup TS, Lehtimäki T, Puura K, Haldeman-Englert C, Pearl J, Goodell M, Willour VL, Derosse P, Steele J, Kassem L, Wolff J, Chitkara N, McMahon FJ, Malhotra AK, Potash JB, Schulze TG, Nöthen MM, Cichon S, Rietschel M, Leibenluft E, Kustanovich V, Lajonchere CM, Sutcliffe JS, Skuse D, Gill M, Gallagher L, Mendell NR; Wellcome Trust Case Control Consortium, Craddock N, Owen MJ, O'Donovan MC, Shaikh TH, Susser E, Delisi LE, Sullivan PF, Deutsch CK, Rapoport J, Levy DL, King MC, Sebat J. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet. 2009 Nov;41(11):1223-7. doi: 10.1038/ng.474. Epub 2009 Oct 25. — View Citation
Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry. 1995 Dec;52(12):998-1007. — View Citation
Ongür D, Jensen JE, Prescot AP, Stork C, Lundy M, Cohen BM, Renshaw PF. Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol Psychiatry. 2008 Oct 15;64(8):718-26. doi: 10.1016/j.biopsych.2008.05.014. Epub 2008 Jul 7. — View Citation
Prescot AP, de B Frederick B, Wang L, Brown J, Jensen JE, Kaufman MJ, Renshaw PF. In vivo detection of brain glycine with echo-time-averaged (1)H magnetic resonance spectroscopy at 4.0 T. Magn Reson Med. 2006 Mar;55(3):681-6. — View Citation
Sebat J, Levy DL, McCarthy SE. Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends Genet. 2009 Dec;25(12):528-35. doi: 10.1016/j.tig.2009.10.004. Epub 2009 Oct 31. Review. — View Citation
Tsai G, Lane HY, Yang P, Chong MY, Lange N. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 2004 Mar 1;55(5):452-6. — View Citation
Tsai G, Yang P, Chung LC, Lange N, Coyle JT. D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 1998 Dec 1;44(11):1081-9. — View Citation
Tsai GE, Lin PY. Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des. 2010;16(5):522-37. Review. — View Citation
Tsai GE, Yang P, Chang YC, Chong MY. D-alanine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 2006 Feb 1;59(3):230-4. Epub 2005 Sep 9. — View Citation
Tsai GE, Yang P, Chung LC, Tsai IC, Tsai CW, Coyle JT. D-serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry. 1999 Nov;156(11):1822-5. — View Citation
van Berckel BN, Evenblij CN, van Loon BJ, Maas MF, van der Geld MA, Wynne HJ, van Ree JM, Kahn RS. D-cycloserine increases positive symptoms in chronic schizophrenic patients when administered in addition to antipsychotics: a double-blind, parallel, placebo-controlled study. Neuropsychopharmacology. 1999 Aug;21(2):203-10. — View Citation
Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, Saemundsen E, Stefansson H, Ferreira MA, Green T, Platt OS, Ruderfer DM, Walsh CA, Altshuler D, Chakravarti A, Tanzi RE, Stefansson K, Santangelo SL, Gusella JF, Sklar P, Wu BL, Daly MJ; Autism Consortium. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008 Feb 14;358(7):667-75. doi: 10.1056/NEJMoa075974. Epub 2008 Jan 9. — View Citation
Wonodi I, Schwarcz R. Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in Schizophrenia. Schizophr Bull. 2010 Mar;36(2):211-8. doi: 10.1093/schbul/sbq002. Epub 2010 Feb 10. Review. — View Citation
* Note: There are 33 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Positive and Negative Symptom Scores at Baseline and at 2 Weeks, 4 Weeks, and 6 Weeks During Intervention 1 (Glycine or Placebo), Intervention 2 (Glycine or Placebo), and During Open-label Glycine | Positive and Negative Symptom Scale (PANSS) measures positive and negative symptoms of schizophrenia. The sum of ratings for seven positive symptoms are measured on a scale from 7-49 with 7 meaning no symptoms and 49 meaning severe symptoms. | baseline and at 2 weeks, 4 weeks, and 6 weeks within each treatment period and after each treatment period | |
Primary | Neurocognitive Function at Baseline, During Glycine Treatment, During Placebo Treatment and During Open-label Glycine | Scores on each of 8 domains of cognitive function (speed of processing, attention/vigilance, working memory, verbal learning, visual learning, reasoning/problem solving, social cognition, overall composite). Scores are T scores ranging from 0-100, with 50 representing the mean for a population based on a normal distribution; standard deviation of 10. Only overall composite score is entered. | At baseline, during glycine treatment, during placebo treatment and during open-label glycine | |
Primary | Glycine Plasma Amino Acid Levels at Baseline, During Glycine Treatment, During Placebo Treatment and During Open-label Glycine | Plasma glycine levels; normal range is 122-467 nM/mL | At baseline, during glycine treatment, during placebo treatment and during open-label glycine | |
Primary | Brief Psychiatric Rating Scale (BPRS) Scores at Baseline and at 2 Weeks, 4 Weeks, and 6 Weeks Positive and Negative Symptom Scores at Baseline and at 2, 4, and 6 Weeks During Intervention 1, Intervention 2, and During Open-label Glycine | Total BPRS score measures severity of 18 psychiatric symptoms. Each symptom is scored 1-7 with the total score ranging from 18-126. 18 means no symptoms and 126 means very severe symptoms. | baseline and at 2 weeks, 4 weeks, and 6 weeks within and after each treatment period | |
Primary | Clinical Global Impression (CGI) Severity Scores at Baseline and at 2 Weeks, 4 Weeks, and 6 Weeks Within Each Treatment Period | Clinical Global Impression (CGI) severity scores measure severity of mental illness on a scale of 1-7 where 1 means normal, not at all ill, 2 means borderline mentally ill, 3 means mildly ill, 4 means moderately ill, 5 means markedly ill, 6 means severely ill and 7 means among the most extremely ill patients. | CGI at baseline and at 2 weeks, 4 weeks, and 6 weeks per treatment period | |
Primary | Clinical Global Impression (CGI) Therapeutic Effect Scores at 2 Weeks, 4 Weeks, and 6 Weeks Within Each Treatment Period | Clinical Global Impression (CGI) therapeutic effect scores measure degree of improvement as marked (1), moderate (5), minimal (9) or unchanged/worse (13). | at 2 weeks, 4 weeks, and 6 weeks within each treatment period | |
Primary | Mania Symptom Scores at Baseline and at 2 Weeks, 4 Weeks, and 6 Weeks Within Each Treatment Period | Young Mania Rating Scale (YMRS) measures severity of manic symptoms. The sum of ratings for 7 symptoms of mania is measured on a scale from 0-4 and the sum of 4 symptoms of mania is measured on a scale from 0-8 to yield a total score ranging from 0-60, with 0 meaning no manic symptoms and 60 meaning severe manic symptoms. | baseline and at 2 weeks, 4 weeks, and 6 weeks within each treatment period | |
Primary | Depression Symptom Scores at Baseline and at 2 Weeks, 4 Weeks, and 6 Weeks Within Each Treatment Period | Hamilton Depression Scale measures severity of depression symptoms. The sum of ratings for 9 depression symptoms are measured on a scale from 0-2 with 0 meaning no symptoms and 2 meaning some level of severity of that specific symptom. The rating for 1 depression symptom is measured on a scale from 0-3 with 0 meaning no symptoms and 3 meaning a severe level of that specific symptom. The sum of ratings for 11 depression symptoms are measured on a scale from 0-4 with 0 meaning no symptoms and 4 meaning a severe level of that specific symptom. The three sums are added to produce an overall depression rating scale score ranging from 0-65. | baseline and at 2 weeks, 4 weeks, and 6 weeks within each treatment period | |
Secondary | Brain Glycine/CR Ratio | magnetic resonance spectroscopy: glycine/creatine ratio. Participants were assessed at 1) BASELINE PRE-GLYCINE TREATMENT: pre-glycine challenge drink, 60 minutes post challenge drink, 80 minutes post challenge drink, 100 minutes post challenge drink, and 120 minutes post challenge drink (0.4 g/kg up to max of 30 g); and 2) IN WEEK 6 OF OPEN-LABEL GLYCINE TREATMENT: pre-glycine dose, and 60 minutes, 80 minutes, 100 minutes and 120 minutes post daily dose of glycine. Measured in posterior occipital cortex | baseline (pre-challenge, 60, 80, 100, 120 minutes post-challenge), and week 6 of glycine (pre-dose and 60, 80, 100, 120 minutes post-dose | |
Secondary | Brain Glutamate Metabolite Levels (Glutamate/Creatine Ratio: Glu/Cr) at 1) BASELINE - Pre-glycine Treatment and 2) IN WEEK 6 OF GLYCINE TREATMENT | magnetic resonance spectroscopy - glutamate metabolite level. Participants were assessed 1) pre-glycine treatment and in week 6 of open-label glycine treatment. Measured in posterior occipital cortex. | baseline and week 6 of glycine | |
Secondary | Brain GABA Metabolite Levels (GABA/Creatine Ratio: GABA/Cr) at 1) BASELINE - Pre-glycine Treatment and 2) IN WEEK 6 OF GLYCINE TREATMENT | Magnetic resonance spectroscopy GABA/Cr. Participants were assessed 1) pre-glycine treatment (baseline) and 2) in week 6 of open-label glycine treatment measured in posterior occipital cortex. | Baseline and week 6 of glycine | |
Secondary | Auditory Evoked Potentials in Latency (Msec) at BASELINE - Pre-glycine Treatment and 2) IN WEEK 6 OF TREATMENT WITH GLYCINE | Auditory evoked potentials latency: P300 at fz, cz, and pz); N100 at fz and cz); P200 at fz and cz. Participants were assessed at baseline and in week of open-label glycine treatment. | Recordings at baseline and week 6 of glycine | |
Secondary | Change in Magnocellular Pathway Function on Glycine Compared With Baseline. No Data Were Collected. | functional magnetic resonance imaging | 6 weeks per treatment arm | |
Secondary | Auditory Evoked Potentials in Amplitude (Degrees Measured in Microvolts) at 1) BASELINE - Pre-glycine Treatment and 2) IN WEEK 6 OF GLYCINE TREATMENT | Auditory evoked potentials amplitude: P300 at fz, cz, and pz; N100 at fz and cz; P200 at fz and cz; P50 S1 and S2 amplitude; mismatch negativity (MMN) at fz and cz. Participants were assessed at baseline and in week 6 of open-label glycine treatment. | Recordings at baseline and week 6 of glycine | |
Secondary | Auditory Evoked Potentials in Gammas Oscillations (the Power Spectrum is Measured in Microvolts Squared) at 1) BASELINE - Pre-glycine Treatment and 2) IN WEEK 6 OF GLYCINE TREATMENT | Auditory evoked potentials gamma: G40 hz phase locking at fz and cz; G20 hz phase locking response at fz and cz G30 hz phase locking response at fz and cz. Participants were assessed at baseline and in week 6 of open-label glycine treatment. | Recordings at baseline and week 6 of glycine | |
Secondary | Auditory Evoked Potentials - P50 Ratio (P50 S2/P50 S1 Amplitude) at 1) BASELINE - Pre-glycine Treatment and 2) IN WEEK 6 OF GLYCINE TREATMENT | Auditory evoked potentials amplitude: P50 ratio (S2/S1). Participants were assessed at baseline and in week 6 of open-label glycine treatment. | Recordings at baseline and week 6 of glycine |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05111548 -
Brain Stimulation and Cognitive Training - Efficacy
|
N/A | |
Completed |
NCT02855762 -
Targeting the Microbiome to Improve Clinical Outcomes in Bipolar Disorder
|
N/A | |
Recruiting |
NCT05915013 -
Alpha-Amino-3-Hydroxy-5-Methyl-4- Isoxazole Propionic Acid Receptor Components of the Anti-Depressant Ketamine Response
|
Phase 1 | |
Recruiting |
NCT05206747 -
Ottawa Sunglasses at Night for Mania Study
|
N/A | |
Completed |
NCT02513654 -
Pharmacokinetics, Safety and Tolerability of Repeat Dosing Lamotrigine in Healthy Chinese Subjects
|
Phase 1 | |
Recruiting |
NCT06313918 -
Exercise Therapy in Mental Disorders-study
|
N/A | |
Completed |
NCT02304432 -
Targeting a Genetic Mutation in Glycine Metabolism With D-cycloserine
|
Early Phase 1 | |
Recruiting |
NCT06197048 -
Effect of Nutritional Counseling on Anthropometry and Biomarkers in Patients Diagnosed With Schizophrenia/Psychosis or Bipolar Affective Disorder
|
N/A | |
Completed |
NCT03497663 -
VIA Family - Family Based Early Intervention Versus Treatment as Usual
|
N/A | |
Completed |
NCT04284813 -
Families With Substance Use and Psychosis: A Pilot Study
|
N/A | |
Completed |
NCT02212041 -
Electronic Cigarettes in Smokers With Mental Illness
|
N/A | |
Recruiting |
NCT05030272 -
Comparing Two Behavioral Approaches to Quitting Smoking in Mental Health Settings
|
N/A | |
Recruiting |
NCT04298450 -
ED to EPI: Using SMS to Improve the Transition From the Emergency Department to Early Psychosis Intervention
|
N/A | |
Active, not recruiting |
NCT03641300 -
Efficacy of Convulsive Therapies for Bipolar Depression
|
N/A | |
Not yet recruiting |
NCT04432116 -
Time and Virtual Reality in Schizophrenia and Bipolar Disorder
|
N/A | |
Completed |
NCT02970721 -
Use of Psychotropic Medications Among Pregnant Women With Bipolar Disorder
|
||
Terminated |
NCT02909504 -
Gao NARASD Lithium Study
|
Phase 4 | |
Terminated |
NCT02893371 -
Longitudinal Comparative Effectiveness of Bipolar Disorder Therapies
|
||
Recruiting |
NCT02481245 -
BezafibrateTreatment for Bipolar Depression: A Proof of Concept Study
|
Phase 2 | |
Recruiting |
NCT03088657 -
Design and Methods of the Mood Disorder Cohort Research Consortium (MDCRC) Study
|