Atrioventricular Block Clinical Trial
Official title:
Prospective Analysis of Low-Dose Adenosine on Sinus and Atrioventricular Nodal Conduction in the Pediatric Transplanted Heart
Verified date | February 2018 |
Source | Columbia University |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Heart transplants save the lives of nearly 500 children in heart failure per year. Columbia
is one of the largest pediatric heart transplant centers in the world, averaging 25
transplants per year, and providing ongoing care to nearly 250 children with transplanted
hearts. After transplant, children are at increased risk to develop sudden onset of
abnormally fast heart rates. This research project will study adenosine, a medication that is
routinely used to slow fast heart rates in non-transplanted children (i.e. normal hearts),
and its effects on the transplanted heart. Adenosine is often not used in patients with
transplanted hearts because, based on prior limited research in adult patients, the standard
adult dose may have a longer medication effect, producing a slower heart rate for an
undesirable period of time. However, the current alternatives to adenosine treatment are
either inappropriate for the pediatric age range, or have increased risk of unwanted side
effects. This research project will answer two questions: is adenosine safe to give a child
who has had a heart transplant, and will it be effective in treating the fast heart rate?
All pediatric heart transplant patients undergo regular heart testing, known as a cardiac
catheterization, one or more times per year. Three days before testing, participants will be
asked to stop a regular medication, dipyridamole, because it slows the breakdown of adenosine
in the body, and may increase its effects. (Of note, all patients that are on dipyridamole
are also on aspirin, which gives a second line of heart protection, and will not be stopped.)
After regular cardiac catheterization, all patients will already have intravenous (IV) access
to give medication. Also, this setting allows the opportunity to have a back-up pacing
catheter in the heart, ensuring that there will not be a longer than desired effect from the
medication. Adenosine will be given per a low-dose protocol until either the medication
effect is seen or the maximum dose is reached. There will be no difference in procedure
recovery period time, and patients will resume regular home medications after finishing the
test. As Columbia is one of largest pediatric heart transplant centers in the world, studying
the effects of adenosine at low doses will benefit the investigators population greatly,
either to find a new recommended medication dose, or to provide evidence that this medication
is truly inadvisable for the investigators patients.
The initial study was completed with all 80 patients enrolled and tested. Subsequent testing
is now ongoing on patients in whom dipyridamole was stopped prior to their initial testing
with a repeat study without discontinuing the dipyridamole. We anticipate re-testing about 30
of the 80 patients.
Status | Completed |
Enrollment | 80 |
Est. completion date | July 2017 |
Est. primary completion date | April 2016 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 6 Months to 25 Years |
Eligibility |
Inclusion Criteria: - Patients who have undergone a heart transplantation and who receive their routine care at the Morgan Stanley Children's Hospital of New York, Columbia University Medical Center Exclusion Criteria: - Patients admitted to the inpatient heart failure team - Patients present for their first outpatient catheterization after new transplant - Abnormal hemodynamics concerning for acute rejection - Patients present for follow up of rejection (last biopsy positive) - Ingested methylxanthine-containing foods that day - Patients taking oral dipyridamole and did not discontinue it 3 days prior to testing - Prior transplant history of coronary artery vasculopathy with this allograft or concern for abnormal coronary vasculature by angiography on the day of the catheterization - Patients taking carbamazepine (may potentiate adenosine effect) - Patients with known conduction disease (first, second or third degree atrioventricular block) and/or with pre-existing sinus node dysfunction (based on pre-existing ECG, Holter or inpatient telemetry) - Patients/guardians unable to give consent in English |
Country | Name | City | State |
---|---|---|---|
United States | Columbia University Medical Center | New York | New York |
Lead Sponsor | Collaborator |
---|---|
Columbia University |
United States,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Incidence of sinus bradycardia or atrioventricular block with low-dose adenosine administration that is greater than 12 seconds and requires hemodynamic intervention (ventricular escape pacing). | Up to 1 hour after the catheterization | ||
Secondary | Prevalence of inducing atrioventricular block (defined as a single non-conducted P wave) at adenosine doses lower than suggested starting dose (100µg/kg) in PALS algorithm. | Up to 1 hour after the catheterization |
Status | Clinical Trial | Phase | |
---|---|---|---|
Not yet recruiting |
NCT06023784 -
The Impact of LBBAP vs RVP on the Incidence of New-onset Atrial Fibrillation in Patients With Atrioventricular Block
|
N/A | |
Completed |
NCT01019213 -
Acute and Chronic Effect of His-pacing in Consecutive Patients With AV-block
|
Phase 4 | |
Completed |
NCT04884100 -
enHEART - Exploring Full Content of Optical Signals to Enhance Cardiac Arrhythmia Screening
|
N/A | |
Recruiting |
NCT05774262 -
Pacemaker Implantation Versus Cardioneuroablation for Functional Atrioventricular Block
|
N/A | |
Terminated |
NCT04093414 -
Left Bundle Area Versus Selective His Bundle Pacing
|
N/A | |
Withdrawn |
NCT00559143 -
Biventricular Alternative Pacing
|
Phase 4 | |
Recruiting |
NCT04730921 -
Impact of Left Bundle Branch Area Pacing vs. Right Ventricular Pacing in Atrioventricular Block (LEAP-Block)
|
N/A | |
Recruiting |
NCT05585411 -
PReventive Effect Of Left Bundle Branch Area Pacing Versus righT vEntricular paCing on All Cause deaTh, Heart Failure Progression, and Ventricular dysSYNChrony in Patients With Substantial Ventricular Pacing (PROTECT-SYNC): Multicenter Prospective Randomized Controlled Trial
|
N/A | |
Recruiting |
NCT05575557 -
Pulmonary Artery Pressure and Right Heart Evaluation for Patients Requiring Physiological Pacing Treatment
|
N/A | |
Completed |
NCT00187278 -
Biopace Study: Biventricular Pacing for Atrioventricular Block to Prevent Cardiac Desynchronization
|
N/A | |
Recruiting |
NCT04595487 -
LVSP vs RVP in Patients With AV Conduction Disorders
|
N/A | |
Completed |
NCT04269733 -
Risk of Pacing-induced Cardiomyopathy
|
||
Recruiting |
NCT03851315 -
Left Bundle Branch Area Pacing in AVB Patients
|
||
Completed |
NCT02282033 -
Safety and Performance Study of the Moderato System
|
N/A | |
Completed |
NCT01922518 -
Impact of Right Ventricular Pacing Determined by Electrocardiography
|
N/A | |
Recruiting |
NCT04624763 -
Protection of Cardiac Function With Left Bundle Branch Pacing in Patients With Atrioventricular Block
|
N/A | |
Completed |
NCT03231826 -
Arrhythmias in Post-Myocardial Infarction Patients
|
||
Not yet recruiting |
NCT04437901 -
COVIDAR - Arrhythmias in COVID-19
|
||
Recruiting |
NCT01717469 -
Safety and the Effects of Isolated Left Ventricular Pacing in Patients With Bradyarrhythmias
|
Phase 4 | |
Completed |
NCT02154750 -
AV Delay Optimization vs. Intrinsic Conduction in Pacemaker Patients With Long PR Intervals
|
N/A |