View clinical trials related to Atrioventricular Block.
Filter by:Heart transplants save the lives of nearly 500 children in heart failure per year. Columbia is one of the largest pediatric heart transplant centers in the world, averaging 25 transplants per year, and providing ongoing care to nearly 250 children with transplanted hearts. After transplant, children are at increased risk to develop sudden onset of abnormally fast heart rates. This research project will study adenosine, a medication that is routinely used to slow fast heart rates in non-transplanted children (i.e. normal hearts), and its effects on the transplanted heart. Adenosine is often not used in patients with transplanted hearts because, based on prior limited research in adult patients, the standard adult dose may have a longer medication effect, producing a slower heart rate for an undesirable period of time. However, the current alternatives to adenosine treatment are either inappropriate for the pediatric age range, or have increased risk of unwanted side effects. This research project will answer two questions: is adenosine safe to give a child who has had a heart transplant, and will it be effective in treating the fast heart rate? All pediatric heart transplant patients undergo regular heart testing, known as a cardiac catheterization, one or more times per year. Three days before testing, participants will be asked to stop a regular medication, dipyridamole, because it slows the breakdown of adenosine in the body, and may increase its effects. (Of note, all patients that are on dipyridamole are also on aspirin, which gives a second line of heart protection, and will not be stopped.) After regular cardiac catheterization, all patients will already have intravenous (IV) access to give medication. Also, this setting allows the opportunity to have a back-up pacing catheter in the heart, ensuring that there will not be a longer than desired effect from the medication. Adenosine will be given per a low-dose protocol until either the medication effect is seen or the maximum dose is reached. There will be no difference in procedure recovery period time, and patients will resume regular home medications after finishing the test. As Columbia is one of largest pediatric heart transplant centers in the world, studying the effects of adenosine at low doses will benefit the investigators population greatly, either to find a new recommended medication dose, or to provide evidence that this medication is truly inadvisable for the investigators patients. The initial study was completed with all 80 patients enrolled and tested. Subsequent testing is now ongoing on patients in whom dipyridamole was stopped prior to their initial testing with a repeat study without discontinuing the dipyridamole. We anticipate re-testing about 30 of the 80 patients.
The main objective of this study is to verify the effectiveness of the new ACAP ® Confirm algorithm in the automatic management of atrial capture.
The purpose of the study is to evaluate the safety and performance of the Moderato System by implanting the Moderato pacemaker in patients who require a dual chamber pacemaker, and who also have hypertension, in order to reduce their blood pressure.
Connective tissue diseases have been related to heart conduction disorders. The anti-Ro/SSA antibodies are thought to have a pathogenic role, and they most prevalent in systemic lupus erythematous (SLE). The aim of this study is to evaluate the relationship between SLE, arrhythmias and its serologic profile.
This is a randomized, prospective clinical trial to determine the effects of two different pacemaker atrioventricular delay (AV delay) settings on heart function in patients with dual chamber pacemakers implanted for symptomatic bradycardia with long PR intervals (delayed conduction between upper and lower chambers of the heart). The study will compare a long, fixed AV delay (standard) with an optimized AV delay for each individual using echocardiography (experimental).
The purpose of this study is to determine the incidence and predictors of high degree or complete atrioventricular block (AVB) (paroxysmal or persistent) in patients with new-onset persistent left bundle branch block (NOP-LBBB) following transcatheter aortic valve implantation (TAVI) and to evaluate the usefulness of the Reveal LINQ® insertable Cardiac Monitor (ICM) (Medtronic, Inc., Minneapolis, USA) for the detection of significant arrhythmias in patients with NOP-LBBB following TAVI.
This study was designed to evaluate the potential benefits of treatment with biventricular device in patients with normal systolic function , indication for pacing and impaired atrio-ventricular conduction , by comparing the treatment with dual-chamber device . The REAL -CRT study is designed to test the hypothesis that, in patients with atrioventricular block of I degree and standard pacing indications , biventricular pacing is superior to single stimulation of the right ventricle (RV) with optimized algorithms for minimization of pacing , as assessed by echocardiography an endpoint defined in terms of maintenance over time of left ventricular ejection fraction (LVEF ) and left ventricular end-systolic volume ( LVESV ) .
The purpose of this study is to explore if there is a less harmful way to pace patients with first-degree AV-block to ensure that the negative effects inferred by the pacing do not outweigh the positive effects of AV-synchrony. The main hypothesis of the study is that His-bundle pacing will offer a more physiological mode of pacing in patients with first-degree AV-block than conventional pacing. Patients scheduled for catheter ablation of atrial fibrillation (AF) in sinus rhythm, with first degree AV-block, normal QRS duration less than 120 ms and normal left ventricular ejection fraction will be included. During the AF ablation three different pacing modes (atrial, AV-synchronous and His-bundle pacing) at two different rates (5 to10 bpm above the basal rate and at 100 bpm) will be performed and evaluated using echocardiography. After the completion of all six pacing protocols (i.e., three modes at two different rates) the experimental part of the procedure ends. The primary end-point will be echocardiographic evidence of dyssynchrony. Secondary end-points will include left ventricular ejection fraction, left ventricular volume, mitral regurgitation, septal to posterior wall motion delay and inter-ventricular wall motion delay. Since the research study is conducted in parallel with the standard catheter ablation, we do not anticipate any additional side effects as a result of the study.
Typically pacemaker electrode has been attached to the right ventricular apex. This method lead to Non-physiological Ventricular contraction. It has been reported to cause by ventricular dysfunction. In conclusion, this study demonstrate that impact of right ventricular pacing determined by electrocardiography was planned.
The study aims to use cardiac MRI scans and analysis techniques to evaluate differences in cardiac function after 12 months of pacing in patients with pacing leads placed in different positions within the right ventricle (apically or septally).