Clinical Trials Logo

Clinical Trial Summary

To determine whether aspirin is more effective than placebo for the prevention of recurrent symptomatic venous thromboembolism when given for at least two years after the initial 6-12 month of oral anticoagulant therapy in patients with idiopathic venous thromboembolism


Clinical Trial Description

Background

Venous thromboembolism, which includes deep vein thrombosis and pulmonary embolism, is a common disease with an annual incidence of 0.5-1.6 per 1000 in the general population.1-4 Standard treatment with intravenous or subcutaneous heparin or low molecular heparin relayed with oral anticoagulants is highly effective in preventing recurrent episodes of venous thromboembolism.5 However, oral anticoagulant therapy has a number of limitations including an increased risk of major bleeding and the need for laboratory monitoring to adjust dose. Because of these limitations, venous thromboembolism is usually treated with oral anticoagulants for a limited period of time. Anticoagulants are generally discontinued when the risks and inconvenience of remaining on treatment outweigh the risk of recurrent venous thromboembolism. Indeed, recent studies showed that after discontinuation of anticoagulant treatment, the risk of recurrent venous thromboembolism remains high in patients with idiopathic venous thromboembolism.

Recently, four major randomized trials have evaluated extended-duration treatment with oral anticoagulants in patients with venous thromboembolism. In each of these trials more than 90% of recurrences occurred after oral anticoagulants had been discontinued 6-9. The rate of recurrence after discontinuation of oral anticoagulants was similar in patients assigned long-term therapy compared with short-term therapy (about 15% in the 2-3 years after warfarin discontinuation) which indicates that although oral anticoagulants are highly effective to prevent recurrence, it have no impact on the natural history of idiopathic venous thromboembolism. Taken together, these data suggest that effective therapy should be continued indefinitely in patients with idiopathic venous thromboembolism if recurrence is to be avoided. Indeed, once oral anticoagulants are discontinued, there are currently no established safe and effective alternatives to prevent recurrence in patients with idiopathic venous thromboembolism. However, the long-term use of oral anticoagulants is not only inconvenient because of the need for close laboratory monitoring but also is constrained by an increased risk of major bleeding, including fatal and intracranial bleeding. In randomized trials of extended-duration oral anticoagulants (target INR 2.0-3.0) for the treatment of venous thromboembolism,6-9 the annual incidence of intracranial bleeding was 0.3%, major bleeding 3%, and the case-fatality rate of major bleeding approximately 10%. In addition, 5-15% of patients experienced minor bleeding each year. These data highlight the need to identify simple, safe, effective, and widely applicable strategies for the long-term prevention of recurrent deep vein thrombosis or pulmonary embolism in patients with idiopathic venous thromboembolism.

About 3% of patients with venous thromboembolism experience an arterial cardiovascular event (myocardial infarction, stroke, sudden otherwise unexplained death) in the 2-3 years after the first episode of venous thromboembolism10. The long-term use of oral anticoagulants could potentially prevent these adverse events. Barriers to the more widespread appropriate use of oral anticoagulants include physician concerns regarding the risk of bleeding, particularly in the elderly, as well as the need for close monitoring and regular blood tests to measure the INR. A simple, safe, effective, and widely applicable pharmacological approach is needed for the prevention of these events.

The clinical utility of aspirin in the management of venous thromboembolism is a matter of debate. The Pulmonary Embolism Prevention Study 11 demonstrated that 35 days of low-dose aspirin (160 mg daily) compared with placebo reduced the risk of symptomatic venous thromboembolism, including fatal pulmonary embolism, by about one-third (RRR 36%, 95% CI: 19-50%, p=0.0003) in patients undergoing emergency surgery for hip fracture or elective joint arthroplasty. There was no excess of fatal or intracranial bleeding. In the Heart and Estrogen/progestin Replacement Study (HERS)12 2800 postmenopausal women with coronary artery disease were randomized to hormonal replacement therapy or placebo. A secondary analysis showed that the use of aspirin was independently associated with a 50% reduction (95% CI: 20-80%) in risk of venous thromboembolism during an average of 4.1 years of follow-up. Taken together, these data suggest that aspirin reduces the risk of a first episode of venous thromboembolism by about one-quarter (i.e., 25% risk reduction).

A systematic overview including more than 8000 patients from randomized trials on antiplatelet primary thromboprophylaxis suggested that antiplatelet therapy was effective to prevent deep vein thrombosis and pulmonary embolism in high risk patients (Antiplatelet Trialists' Collaboration).13 Antiplatelet therapy was associated with a relative risk reduction [RRR] of 39%; (p=0.00001) in the incidence of venous thromboembolism in high-risk medical patients or undergoing orthopedic or general surgery. There was no excess in cerebral or fatal bleeding.

The European Stroke Prevention Study 2 (ESPS 2)14 evaluated the efficacy and safety of aspirin, dipyridamole (extended-release preparation), or aspirin and dipyridamole, versus placebo, for the secondary prevention of ischemic stroke in 6,600 patients. Prespecified secondary analyses found that aspirin resulted in a 30% reduction in venous thromboembolism.

Bleeding, particularly within the gastrointestinal tract, is the only important side effect of low-dose aspirin therapy in patients that are not already known to be aspirin intolerant (e.g., allergy). Long term, low-dose aspirin therapy (i.e., 160 mg per day), is associated with about a two-fold increase in the risk of bleeding.15-17 This increase of bleeding is small in patients without known contraindications to aspirin. Evidences from randomized trials of aspirin in asymptomatic subjects, patients with vascular risk factors, or patients with a past history of vascular disease (more than 250,000 patient-years of follow-up), showed an absolute excess of major bleeding with aspirin from 0.3 to 1.7 episodes per 1000 patient-years, equivalent to an absolute risk of 1 event for every 1000 patients treated.15 Increasing doses of aspirin, even within the range of 100-300 mg per day, were associated with an increasing risk of gastrointestinal bleeding, with the lowest risk occurring in patients receiving 100 mg daily.15;18-19

In summary, aspirin could achieve a risk reduction of 30 to 40 episodes of deep vein thrombosis or pulmonary embolism for every 1000 patients treated, at a cost of 1 bleed requiring transfusion in high-risk patients with idiopathic venous thromboembolism. Aspirin is simple to administer and does not require laboratory monitoring.

In the present study we propose to evaluate the use of low-dose aspirin for the prevention of recurrent venous thromboembolism in patients with previous idiopathic venous thromboembolism who have received initial 6-month treatment with oral anticoagulants. ;


Study Design

Allocation: Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Caregiver, Investigator, Outcomes Assessor), Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT00222677
Study type Interventional
Source University Of Perugia
Contact
Status Active, not recruiting
Phase Phase 2/Phase 3
Start date May 2004

See also
  Status Clinical Trial Phase
Recruiting NCT05052918 - The Effect of Exercise and Metformin on Carotid Intima-media Thickness in Patients With Prediabetes N/A
Recruiting NCT04511234 - Sirolimus Coated Balloon Versus Standard Balloon for SFA and Popliteal Artery Disease N/A
Completed NCT05906797 - Impact of Non-surgical Periodontal Therapy in the Improvement of Early Endothelial Dysfunction in Subjects With Periodontitis. N/A
Completed NCT03273972 - INvestigating the Lowest Threshold of Vascular bENefits From LDL Lowering With a PCSK9 InhibiTor in healthY Volunteers N/A
Suspended NCT02932176 - Machine Learning for Handheld Vascular Studies
Recruiting NCT05158257 - Clinical Of Plain Balloon Dilatation Combined Stent Versus Endovascular Debulking Combined Drug-coated Balloon to Treat Arteriosclerosis Occlusive Disease of Lower Extremity N/A
Completed NCT01212900 - Randomized Trial of Imaging Versus Risk Factor-Based Therapy for Plaque Regression Phase 4
Completed NCT03697382 - Effect of Daily Steps on Fat Metabolism N/A
Recruiting NCT06230406 - T-Mem GEne in Atherosclerosis
Completed NCT03654313 - Single and Multiple Ascending Doses of MEDI6570 in Subjects With Type 2 Diabetes Mellitus Phase 1
Completed NCT00382564 - Magnetic Resonance Angiography to Diagnose Atherosclerotic Disease N/A
Recruiting NCT02894931 - Effects of Dietary Interventions on Serum and Macrophage Atherogenicity N/A
Completed NCT02998918 - Effects of Short-term Curcumin and Multi-polyphenol Supplementation on the Anti-inflammatory Properties of HDL N/A
Not yet recruiting NCT02578355 - National Plaque Registry and Database N/A
Recruiting NCT02265250 - Pilot Study-Magnetic Resonance Imaging for Global Atherosclerosis Risk Assessment
Completed NCT03393377 - Preventive Arterial Wall Phenotype and Low-dose Fluvastatin/Valsartan Combination N/A
Completed NCT02268513 - Mediators of Atherosclerosis in South Asians Living in America (MASALA) Social Network Study
Completed NCT02224339 - New Technologies to Determine Carotid Plaque Vulnerability
Not yet recruiting NCT01923012 - Phase II Randomized Placebo-controlled Study With Vitamin K2 in Asymptomatic Calcified Carotid Stenosis Phase 2
Completed NCT02116829 - Is There Room for Butter in a Healthy Diet? N/A