Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT06067152
Other study ID # REMAV-EIT
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date January 1, 2022
Est. completion date January 30, 2024

Study information

Verified date August 2023
Source Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico
Contact Giovanna Chidini, MD
Phone 0255032242
Email giovanna.chidini@policlinico.mi.it
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

There is evidence from randomized controlled trials in adult patients with Acute Respiratory Distress Syndrome (ARDS) suggesting that delivering small tidal volumes with adequate levels of Positive End-Expiratory Pressure (PEEP) and a restrictive fluid strategy could improve outcome. However, there are data and common bedside experience that individual patients may or may not respond to interventions, such as escalation of PEEP or positional changes, and there may be a role for a more personalized ventilator strategy. This strategy could account for the unique individual morphology of lung disease, such as the amount of atelectasis and overdistension as a percentage of total lung tissue, the exact location of atelectasis, and whether positional changes or elevation of PEEP produce lung recruitment or overdistension. Stepwise Recruitment maneuvers (SRMs) in pARDS improve oxygenation in majority of patients. SRMs should be considered for use on an individualized basis in patients with pARDS should be considered if SpO2 decreases by ≥ 5% within 5 minutes of disconnection during suction or coughing or agitation. If a recruitment maneuver is conducted, a decremental PEEP trial must be done to determine the minimum PEEP that sustains the benefits of the recruitment maneuver. Electrical impedance tomography (EIT), a bedside monitor to describe regional lung volume changes, displays a real-time cross-sectional image of the lung. EIT is a non-invasive, non-operator dependent, bedside, radiations-free diagnostic tool, feasible in paediatric patients and repeatable. It allows to study ventilation distribution dividing lungs in four Region Of Interest (ROI), that are layers distributed in an anteroposterior direction, and shows how ventilation is distributed in the areas concerned. EIT measures and calculates other parameters that are related not only to the distribution of ventilation, but also to the homogeneity of ventilation and the response to certain therapeutic maneuvers, such as SRMs or PEEP-application. Aim of this study is to provide a protocolized strategy to assess optimal recruitment and PEEP setting, tailored on the patients individual response in pARDS.


Recruitment information / eligibility

Status Recruiting
Enrollment 13
Est. completion date January 30, 2024
Est. primary completion date December 30, 2023
Accepts healthy volunteers No
Gender All
Age group 1 Month to 5 Years
Eligibility Inclusion Criteria: - Intubated and mechanically ventilated children, ageing 1 months-5 years and meeting the PALICC definition for pediatric Acute Respiratory Distress Syndrome (pARDS) - Informed Consent signed Exclusion Criteria: Patients with one or more of the following characteristics: - Previous barotrauma (pneumothorax, pneumomediastinum or subcutaneous emphysema) - Signs of intracranial hypertension - Cyanotic congenital cardiac disease - Dorso-lumbar pathologies or other bone pathologies associated with restrictive lung disease (such as scoliosis, kyphosis) - Implantable devices not compatible with EIT (such as pace-makers and implantable cardioverter defibrillator) - Controindication to positioning the esophageal catheter (surgery, esophageal stenosis)

Study Design


Related Conditions & MeSH terms


Intervention

Device:
EIT measurement
Evaluation of mechanical ventilation and ventilation distribution through EIT. Mechanical ventilation is set by the physician according to clinical protocolized criteria
Staircase Recruitment Maneuvers with EIT guided and decremental PEEP trial
SRMs will be performed with a standardized ventilation protocol. Patient will be sedated, paralyzed and ventilated in pressure controlled mode, FIO2 to obtain SPO2> 92%, RR 25, I:E =1:1.5. Alarm of pressure limit will be set at 35 cmH2O. The ventilator will be equipped with inspiratory and expiratory hold taste. Inspiratory and expiratory occlusion will be held for 5 seconds, data will be stored and analyzed with the ventilator own tool. Decremental PEEP trial will start if plateau pressure 30 cmH2O will be reached or end inspiratory transpulmonary pressure will exceed 28 cmH2O value. Once reached this level of plateau or transpulmonary pressure, PEEP will be reduced in three steps from 12, 10 and finally to 8 cmH2O every 20 minutes
Setting of EIT-guided mechanical ventilation
Mechanical ventilation is set according to EIT measurement
Reevaluation after 24 h
Evaluation of mechanical ventilation and ventilation distribution through EIT after 24h of ventilation EIT-guided

Locations

Country Name City State
Italy Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico Milano Milan

Sponsors (1)

Lead Sponsor Collaborator
Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico

Country where clinical trial is conducted

Italy, 

References & Publications (23)

Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress sy — View Citation

Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015 Feb 19;372(8):74 — View Citation

Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, Slutsky AS, Pullenayegum E, Zhou Q, Cook D, Brochard L, Richard JC, Lamontagne F, Bhatnagar N, Stewart TE, Guyatt G. Higher vs lower positive end-expiratory pressure in patients with acute lung i — View Citation

Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, Tallarini F, Cozzi P, Cressoni M, Colombo A, Marini JJ, Gattinoni L. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care — View Citation

Chiumello D, Cressoni M, Colombo A, Babini G, Brioni M, Crimella F, Lundin S, Stenqvist O, Gattinoni L. The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Med. 2014 Nov;40(11):1670-8. doi: 10.1007/s00134-014 — View Citation

Cruces P, Donoso A, Valenzuela J, Diaz F. Respiratory and hemodynamic effects of a stepwise lung recruitment maneuver in pediatric ARDS: a feasibility study. Pediatr Pulmonol. 2013 Nov;48(11):1135-43. doi: 10.1002/ppul.22729. Epub 2012 Dec 19. — View Citation

Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006 Apr 27;354(17):1775-86. doi: 10.1056/NEJMoa052 — View Citation

Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, Malacrida R, Di Giulio P, Fumagalli R, Pelosi P, Brazzi L, Latini R; Prone-Supine Study Group. Effect of prone positioning on the survival of patients with acute respiratory failure. N — View Citation

Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girar — View Citation

Kneyber MCJ, de Luca D, Calderini E, Jarreau PH, Javouhey E, Lopez-Herce J, Hammer J, Macrae D, Markhorst DG, Medina A, Pons-Odena M, Racca F, Wolf G, Biban P, Brierley J, Rimensberger PC; section Respiratory Failure of the European Society for Paediatric — View Citation

National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network; Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL. Comparison of two fluid-managemen — View Citation

Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guerin C, Prat G, Morange S, Roch A; ACURASYS Study Investigators. Neuromuscular blockers in early acute r — View Citation

Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: consensus recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015 Jun;16(5):428-39. doi: 10.1097/PCC.0000 — View Citation

Protti A, Cressoni M, Santini A, Langer T, Mietto C, Febres D, Chierichetti M, Coppola S, Conte G, Gatti S, Leopardi O, Masson S, Lombardi L, Lazzerini M, Rampoldi E, Cadringher P, Gattinoni L. Lung stress and strain during mechanical ventilation: any saf — View Citation

Rosemeier I, Reiter K, Obermeier V, Wolf GK. Mechanical Ventilation Guided by Electrical Impedance Tomography in Children With Acute Lung Injury. Crit Care Explor. 2019 Jul 1;1(7):e0020. doi: 10.1097/CCE.0000000000000020. eCollection 2019 Jul. — View Citation

Spinelli E, Mauri T, Fogagnolo A, Scaramuzzo G, Rundo A, Grieco DL, Grasselli G, Volta CA, Spadaro S. Correction to: Electrical impedance tomography in perioperative medicine: careful respiratory monitoring for tailored interventions. BMC Anesthesiol. 201 — View Citation

Stapleton RD, Suratt BT, Neff MJ, Wurfel MM, Ware LB, Ruzinski JT, Caldwell E, Hallstrand TS, Parsons PE. Bronchoalveolar fluid and plasma inflammatory biomarkers in contemporary ARDS patients. Biomarkers. 2019 Jun;24(4):352-359. doi: 10.1080/1354750X.201 — View Citation

Turner DA, Heitz D, Zurakowski D, Arnold JH. Automated measurement of the lower inflection point in a pediatric lung model. Pediatr Crit Care Med. 2009 Jul;10(4):511-6. doi: 10.1097/PCC.0b013e3181a0e274. — View Citation

Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, Carvalho CR, Amato MB. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care M — View Citation

Wolf GK, Gomez-Laberge C, Kheir JN, Zurakowski D, Walsh BK, Adler A, Arnold JH. Reversal of dependent lung collapse predicts response to lung recruitment in children with early acute lung injury. Pediatr Crit Care Med. 2012 Sep;13(5):509-15. doi: 10.1097/ — View Citation

Wolf GK, Gomez-Laberge C, Rettig JS, Vargas SO, Smallwood CD, Prabhu SP, Vitali SH, Zurakowski D, Arnold JH. Mechanical ventilation guided by electrical impedance tomography in experimental acute lung injury. Crit Care Med. 2013 May;41(5):1296-304. doi: 1 — View Citation

Wrigge H, Zinserling J, Muders T, Varelmann D, Gunther U, von der Groeben C, Magnusson A, Hedenstierna G, Putensen C. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lun — View Citation

Zhao Z, Moller K, Steinmann D, Frerichs I, Guttmann J. Evaluation of an electrical impedance tomography-based Global Inhomogeneity Index for pulmonary ventilation distribution. Intensive Care Med. 2009 Nov;35(11):1900-6. doi: 10.1007/s00134-009-1589-y. Ep — View Citation

* Note: There are 23 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Regional Ventilation Delay, RDV (pixels %), at T2 and T0 RDV is an index of atelectrauma, supra-distention and in general an inhomogeneous ventilation 1 day
Secondary Differences in Tidal Impedance Distribution,TID (pixels %), at T0, T1 and T2 for every breathing cycle, a so-called tidal image is generated and each pixel of represents the difference in impedance between end-inspiration and end-expiration. The median value of each tidal image is calculated for the lung area 1 day
Secondary Gravity Centre, GC, differences (pixels %) at T0, T1 and T2 it is the weighted mean of row sums obtained from TV image and it indicates ventral-to-dorsal shifts in ventilation distribution due to lung opening and closing 1 day
Secondary Respiratory Rate at T0, T1 and T2 Respiratory rate (breaths/min) 1 day
Secondary FiO2 (%) at T0, T1 and T2 FiO2 (%) 1 day
Secondary Respiratory compliance at T0, T1 and T2 Respiratory System Compliance 1 day
Secondary Lung compliance at T0, T1 and T2 Clung Lung compliance 1 day
Secondary Chest Wall compliance at T0, T1 and T2 Chest Wall compliance 1 day
Secondary S/F ratio at T0, T1 and T2 S/F ratio 1 day
Secondary Sistolic Blood Pressure at T0, T1 and T2 SBP (mmHg) 1 day
Secondary Diastolic Blood Pressure at T0, T1 and T2 DBP (mmHg) 1 day
Secondary pH at T0, T1 and T2 pH 1 day
Secondary SpO2 at T0, T1 and T2 SpO2 (%) 1 day
Secondary PaO2 at T0, T1 and T2 PaO2 (mmHg) 1 day
See also
  Status Clinical Trial Phase
Completed NCT04435613 - Clinical and Physiological Assessment of a Nearly Ultra-protective Lung Ventilation Strategy: A Quasi-experimental Preliminary Study in ARDS Patients N/A
Enrolling by invitation NCT05020210 - Effect of Early Treatment With Sivelestat Sodium in ARDS Patients
Completed NCT04468971 - REgulatory T Cell infuSion fOr Lung Injury Due to COVID-19 PnEumonia Phase 1
Completed NCT04505592 - Tenecteplase in Patients With COVID-19 Phase 2
Completed NCT04493242 - Extracellular Vesicle Infusion Treatment for COVID-19 Associated ARDS Phase 2
Withdrawn NCT04909879 - Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome Phase 2
Completed NCT02265198 - Relationship of Pulmonary Contusion to Pulmonary Inflammation and Incidence of Acute Respiratory Distress Syndrome N/A
Completed NCT01949272 - Optimization of PEEP for Alveolar Recruitment in ARDS N/A
Not yet recruiting NCT01668368 - Goal Directed Mechanical Ventilation Aimed at Optimal Lung Compliance N/A
Completed NCT01881061 - Lung Sonography in Patients With Acute Respiratory Distress Syndrome in Intensive Care Unit N/A
Completed NCT00808691 - Microcirculation and Oxidative Stress in Critical Ill Patients in Surgical Intensive Care Unit N/A
Completed NCT05035589 - The Effect of Tocilizumab on Procalcitonin and Other Biochemical and Clinical Markers in the Setting of COVID-19 Pneumonia
Recruiting NCT04764032 - Right Ventricular Dysfunction in Ventilated Patients With COVID-19
Completed NCT04556513 - Functional Recovery From Acute Respiratory Distress Syndrome (ARDS) Due to COVID-19: Influence of Socio-Economic Status
Recruiting NCT06036056 - NMR Based Metabolomics Kinetics in ARDS Patients
Recruiting NCT04503876 - Effects of End-expiratory Positive Pressure Optimization in Intubated Patients With Healthy Lung or Acute Respiratory Distress Syndrome N/A
Recruiting NCT04643691 - Losartan and Spironolactone Treatment for ICU Patients With COVID-19 Suffering From ARDS Phase 2
Completed NCT04395911 - Safety and Efficacy of SCD in AKI or ARDS Patients Associated With COVID-19 Infections N/A
Not yet recruiting NCT05341687 - Prognostic Value of Respiratory System Compliance Under VV-ECMO on 180-day Mortality in COVID-19 ARDS.
Recruiting NCT05056090 - Effect of Prone Positioning on Mortality in Patients With Mild to Moderate Acute Respiratory Distress Syndrome. N/A