Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT05150847
Other study ID # 2021/11-02
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date December 25, 2021
Est. completion date April 13, 2022

Study information

Verified date January 2022
Source Tepecik Training and Research Hospital
Contact KAZIM ROLLAS
Phone +905532787535
Email kazim.rollas@yahoo.com
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Prone positioning improves oxygenation in patients with ARDS (1-3). Patients with severe ARDS due to COVID-19 are candidates for prone position. It should be started within 36-48 h and maintained 1, 3). Prone ventilationARDS based on a randomized trial that showed a mortality benefit (PROSEVA) (3). The improvement of oxygenation occurs by making ventilation more homogeneous, limiting ventilator-associated lung injury (4-6). Prone positioning was as effective in improving oxygenation, static respiratory system compliance (Crs) (7). Higher PEEP should be applied when there is a high recruitability potential of the lung. This study aimed to investigate whether prone positioning changes the recruitability position of the lung.in COVID-ARDS.


Description:

Prone positioning improves oxygenation in patients with ARDS (1-3). Patients with severe ARDS due to COVID-19 are candidates for prone position. It should be started within 36-48 h and maintained 1, 3). Prone ventilationARDS based on a randomized trial that showed a mortality benefit (PROSEVA) (3). The improvement of oxygenation occurs by making ventilation more homogeneous, limiting ventilator-associated lung injury (4-6). Prone positioning was as effective in improving oxygenation, static respiratory system compliance (Crs) (7).Higher PEEP should be applied when there is a high recruitability potential of the lung. This study aimed to investigate whether prone positioning changes the oxygenation, respiratory mechanics and recruitability position of the lung in COVID-ARDS.


Recruitment information / eligibility

Status Recruiting
Enrollment 50
Est. completion date April 13, 2022
Est. primary completion date February 1, 2022
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Adult patients with laboratory-confirmed COVID-19 admitted to the ICU - The patients receive invasive mechanical ventilation and meet the criteria for ARDS (Berlin definition) (8), with under continuous infusion of sedatives, Exclusion Criteria: - Pregnancy - Pneumothorax and or chest tube - Chronic obstructive lung disease - interstitial lung disease - intraabdominal hypertension - increase in intracranial blood pressure - Haemodynamic unstability requiring vasopressors

Study Design


Related Conditions & MeSH terms


Intervention

Other:
Oxygenation
Oxygenation will be calculated as PaO2/ FiO2 ratio.Static compliance will be calculated as tidal volume divided driving pressure.The potential for lung recruitment will be assessed by means of the R/I ratio (10).

Locations

Country Name City State
Turkey Kazim Rollas Izmir

Sponsors (1)

Lead Sponsor Collaborator
Tepecik Training and Research Hospital

Country where clinical trial is conducted

Turkey, 

References & Publications (10)

ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012 Jun 20;307(23):2526-33. doi: 10.1001/jama.2012.5669. — View Citation

Chen L, Del Sorbo L, Grieco DL, Junhasavasdikul D, Rittayamai N, Soliman I, Sklar MC, Rauseo M, Ferguson ND, Fan E, Richard JM, Brochard L. Potential for Lung Recruitment Estimated by the Recruitment-to-Inflation Ratio in Acute Respiratory Distress Syndrome. A Clinical Trial. Am J Respir Crit Care Med. 2020 Jan 15;201(2):178-187. doi: 10.1164/rccm.201902-0334OC. — View Citation

Chen L, Del Sorbo L, Grieco DL, Shklar O, Junhasavasdikul D, Telias I, Fan E, Brochard L. Airway Closure in Acute Respiratory Distress Syndrome: An Underestimated and Misinterpreted Phenomenon. Am J Respir Crit Care Med. 2018 Jan 1;197(1):132-136. doi: 10.1164/rccm.201702-0388LE. — View Citation

Cornejo RA, Díaz JC, Tobar EA, Bruhn AR, Ramos CA, González RA, Repetto CA, Romero CM, Gálvez LR, Llanos O, Arellano DH, Neira WR, Díaz GA, Zamorano AJ, Pereira GL. Effects of prone positioning on lung protection in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2013 Aug 15;188(4):440-8. doi: 10.1164/rccm.201207-1279OC. — View Citation

Douglas WW, Rehder K, Beynen FM, Sessler AD, Marsh HM. Improved oxygenation in patients with acute respiratory failure: the prone position. Am Rev Respir Dis. 1977 Apr;115(4):559-66. — View Citation

Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, Palmier B, Le QV, Sirodot M, Rosselli S, Cadiergue V, Sainty JM, Barbe P, Combourieu E, Debatty D, Rouffineau J, Ezingeard E, Millet O, Guelon D, Rodriguez L, Martin O, Renault A, Sibille JP, Kaidomar M. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA. 2004 Nov 17;292(19):2379-87. — View Citation

Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013 Jun 6;368(23):2159-68. doi: 10.1056/NEJMoa1214103. Epub 2013 May 20. — View Citation

Lai-Fook SJ, Rodarte JR. Pleural pressure distribution and its relationship to lung volume and interstitial pressure. J Appl Physiol (1985). 1991 Mar;70(3):967-78. Review. — View Citation

Mancebo J, Fernández R, Blanch L, Rialp G, Gordo F, Ferrer M, Rodríguez F, Garro P, Ricart P, Vallverdú I, Gich I, Castaño J, Saura P, Domínguez G, Bonet A, Albert RK. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006 Jun 1;173(11):1233-9. Epub 2006 Mar 23. — View Citation

Park J, Lee HY, Lee J, Lee SM. Effect of prone positioning on oxygenation and static respiratory system compliance in COVID-19 ARDS vs. non-COVID ARDS. Respir Res. 2021 Aug 6;22(1):220. doi: 10.1186/s12931-021-01819-4. Review. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Oxygenation PaO2/FiO2 intubation + 48 hours
Secondary Static compliance Tidal volume divided driving pressure intubation + 48 hours
Secondary Recruitability recruitment to inflation ratio intubation + 48 hours
See also
  Status Clinical Trial Phase
Completed NCT04435613 - Clinical and Physiological Assessment of a Nearly Ultra-protective Lung Ventilation Strategy: A Quasi-experimental Preliminary Study in ARDS Patients N/A
Enrolling by invitation NCT05020210 - Effect of Early Treatment With Sivelestat Sodium in ARDS Patients
Completed NCT04468971 - REgulatory T Cell infuSion fOr Lung Injury Due to COVID-19 PnEumonia Phase 1
Completed NCT04505592 - Tenecteplase in Patients With COVID-19 Phase 2
Completed NCT04493242 - Extracellular Vesicle Infusion Treatment for COVID-19 Associated ARDS Phase 2
Withdrawn NCT04909879 - Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome Phase 2
Completed NCT02265198 - Relationship of Pulmonary Contusion to Pulmonary Inflammation and Incidence of Acute Respiratory Distress Syndrome N/A
Completed NCT01949272 - Optimization of PEEP for Alveolar Recruitment in ARDS N/A
Not yet recruiting NCT01668368 - Goal Directed Mechanical Ventilation Aimed at Optimal Lung Compliance N/A
Completed NCT01881061 - Lung Sonography in Patients With Acute Respiratory Distress Syndrome in Intensive Care Unit N/A
Completed NCT00808691 - Microcirculation and Oxidative Stress in Critical Ill Patients in Surgical Intensive Care Unit N/A
Completed NCT05035589 - The Effect of Tocilizumab on Procalcitonin and Other Biochemical and Clinical Markers in the Setting of COVID-19 Pneumonia
Recruiting NCT04764032 - Right Ventricular Dysfunction in Ventilated Patients With COVID-19
Completed NCT04556513 - Functional Recovery From Acute Respiratory Distress Syndrome (ARDS) Due to COVID-19: Influence of Socio-Economic Status
Recruiting NCT06036056 - NMR Based Metabolomics Kinetics in ARDS Patients
Recruiting NCT04503876 - Effects of End-expiratory Positive Pressure Optimization in Intubated Patients With Healthy Lung or Acute Respiratory Distress Syndrome N/A
Recruiting NCT04643691 - Losartan and Spironolactone Treatment for ICU Patients With COVID-19 Suffering From ARDS Phase 2
Completed NCT04395911 - Safety and Efficacy of SCD in AKI or ARDS Patients Associated With COVID-19 Infections N/A
Not yet recruiting NCT05341687 - Prognostic Value of Respiratory System Compliance Under VV-ECMO on 180-day Mortality in COVID-19 ARDS.
Recruiting NCT05056090 - Effect of Prone Positioning on Mortality in Patients With Mild to Moderate Acute Respiratory Distress Syndrome. N/A