View clinical trials related to ARDS.
Filter by:Vascular leakage following endothelial injury, responsible for interstitial and alveolar edema, is a major feature of pathogen induced acute lung injury. As acute respiratory distress syndrome (ARDS) due to pandemic Covid-19 is associated with more than 60% mortality, controlling vascular leakage may be a major target to decrease the mortality associated with the spreading of the disease in France. FX06, a drug under clinical development containing fibrin-derived peptide beta15-42, is able to stabilize cell-cell interactions, thereby reducing vascular leak and mortality in several animal models, particularly during lipopolysaccharide-induced and dengue hemorrhagic shock . A phase I study was conducted in humans, with no specific adverse event detected with a dose up to 17.5 mg/kg. In a phase II randomized multicentre double-blinded trial in 234 patients suffering from ST+ acute coronary syndrome, FX06 treated patients exhibited a 58% decrease in the early necrotic core zone. Importantly, adverse events were highly comparable between groups, indicating a high safety profile for the drug . Lastly, the drug was used as a salvage therapy in a patient exhibiting a severe ARDS following EBOLA virus infection . Altogether, those data indicate that FX06 is well tolerated in humans and is a potent regulator of vascular leakage. Our hypothesis here is that FX06 may decrease pulmonary vascular hyperpermeability during ARDS following SARS-CoV-2 infection, thereby improving gas exchanges and the outcome of infected patients.
ECMO has emerged as a promising intervention that may provide more efficacious supportive care to patients with refractory severe acute respiratory distress syndrome (ARDS). The largest randomized trial of ECMO for severe forms of ARDS was recently published and demonstrated no significant benefit from early initiation of ECMO with respect to 60-day mortality, when compared with a strategy of conventional mechanical ventilation (MV) (ref EOLIA). However, a rescue ECMO option was used by 28% of the controls, which is likely to have diluted the potential positive effect of ECMO. One may argue that a less restrictive primary endpoint, such as death or rescue ECMO, would have yielded positive findings. Meanwhile, improvements in technology have made ECMO safer and easier to use, allowing for the potential of more widespread application in patients with ARDS. VV-ECMO can be used as a life-saving rescue therapy in patients with ARDS when MV cannot maintain adequate oxygenation or CO2 elimination. Alternatively, VV-ECMO may be used in patients who remain hypoxemic during MV (i.e., PaO2/FiO2<80 mmHg) despite optimization of MV (including the application of high levels of positive end-expiratory pressure (PEEP), neuromuscular blockers, and prone positioning) and allow "lung rest" by lowering airway pressures and tidal volume to ameliorate ventilator-induced lung injury (VILI). Prone positioning (PP) has been used for more than 30 years in patients with acute hypoxemic respiratory failure and in particular with ARDS. Initially, PP in ARDS patients was proposed as an efficient mean to improve oxygenation, sometimes dramatically, in a large number of patients. In addition, it is now clear, and data are still accumulating, that PP is also able to prevent VILI which is as important as maintaining safe gas exchange in mechanical ventilation. Therefore, PP is a strategy that covers the two major goals of ventilator support in ARDS patients, maintaining safe oxygenation and preventing VILI and reducing mortality at the end. This latter objective makes sense on ECMO as one of the main objective of this device is to markedly reduce VILI by resting the lung. Considering that PP is a valuable and safe therapy to reduce VILI, its combination with ECMO could enhance VILI prevention. In recent preliminary studies, it was reported that the combination of VV-ECMO and PP was associated with a dramatic improvement in oxygenation, in pulmonary and thoracic compliance and in chest X-ray findings. It may thus facilitate the weaning of ECMO and can be performed without compromising the safety of the patients. Lung recruitment and improvement in ventilation/perfusion mismatch on prone position may both contribute to improve oxygenation. PP may therefore be efficient to hasten the weaning of VV-ECMO when atelectasis and ventilation/perfusion mismatch occur under ultra-protective ventilation even in patients in whom pre-ECMO PP failed. In addition, it could also enhance ventilator induced lung injury prevention on ECMO.
Prone positioning is one of the few therapies known to improve mortality in ARDS. Traditionally, patients are proned for 16 hours per 24 hour period. Some retrospective data suggests improvement may persist beyond 16 hours. We aim to perform a pilot study comparing traditional prone positioning to prolonged prone positioning in patients with COVID-induced ARDS.
In the SARS-CoV2 pandemic, imaging studies proved its diagnostic utility to determine the severity of lung involvement. Computed tomography (CT) is a state-of-the-art study proven to be a highly sensitive diagnostic test complemented by RT-PCR testing to determine the disease and the degree of severity. In March 2020, the Dutch Society of Radiology developed a standardized assessment scheme for COVID-19 lung disease, called CO-RADS. This system proposes a level of suspicion of pulmonary involvement of COVID-19, based on the simple chest tomography findings. The level of suspicion ranges from very low (CO-RADS 1) to very high (CO-RADS 5), with two additional categories involving a technically deficient study (CO-RADS 0) and a positive RT-PCR test for SARS -CoV-2 known before tomography (CO-RADS 6). For its part, acute respiratory damage secondary to SARS-COV2 pneumonia causes acute respiratory distress syndrome, which warrants immediate medical attention. During the evaluation and triage of patients with suspected or confirmed SARS-COV2 infection, it is a challenge for health personnel given that the severity and clinical presentation is highly variable. The patient's risk stratification is carried out using previously established and validated risk scales and is a fundamental tool for making clinical decisions. Some of the risk indices and scales have been developed and used in the pandemic epicenters, such as China and Europe. Useful for the clinician is the national early warning scale (NEWS 2), severe disease risk assessment score (COVID-GRAM), the rapid severity index for COVID-19 (qCSI), evaluation score of Modified sequential organ failure (mSOFA), the sepsis-induced coagulopathy score (SIC), the ROX index as a predictor of success to the high-flow nasal cannula. The evaluation of the risk of thrombotic complications such as the Padua risk, of cardiac complications such as QT segment prolongation, through the Tisdale risk score. Risk stratification is essential in the current COVID-19 pandemic situation; upon admission, the clinician will discern if the patient requires in-hospital medical treatment, the risk of severe disease, and progression to assisted mechanical ventilation. This work aims to establish whether the severity of the findings identified by cardiac tomography upon admission and the risk established by the different established prognostic indices.
Introduction: SARS-CoV2 infection produces severe pneumonia with pulmonary alveolar collapse. There is no specific treatment to date. In experimental models and humans with septic shock, there is a high production of nitric oxide (NO) and reactive nitrogen species (RNS) and can cause multiple organ failure. The administration of antioxidants such as n-acetylcysteine (NAC), vitamin C, melatonin, and vitamin E participate in increasing the intracellular content of GSH, ROS sequestration, protection of the lipids of cell membranes, cytosol proteins, nuclear DNA, mitochondrial and decrease LPO. Justification: as there is no specific antiviral therapy, the therapeutic options are limited, complications and mortality are high; It is intended to evaluate the effect of antioxidants on the storm outcome of the dysregulation of oxidative stress. Hypothesis: It is postulated that adjuvant therapy with antioxidants and Pentoxifylline reduces the use of ventilators in patients with or without septic shock secondary to severe SARS-COV2 pneumonia as decreases lipoperoxidation, and corrects dysregulation of oxidative stress by increasing the antioxidant capacity. Objectives: To evaluate whether it is possible to avoid intubation or decrease assisted mechanical ventilation days, improve oxidative stress dysregulation in patients with SARS-COV2 infection with severe pneumonia with or without septic shock. Methodology: Quasi-experimental, open analytical, prospective, and longitudinal study (before-after). In patients over 18 years of age who are admitted to the CITIBANAMEX Center with or without septic shock secondary to severe SARS-COV2 pneumonia. There will be two groups: 1) patients without septic shock and 2) patients with septic shock secondary to severe pneumonia due to SARS-COV2. A single antioxidant will be applied following the clinical decision tree (NAC, Vit C, Vit E, melatonin) more Pentoxifylline orally or by orogastric tube for a total of 5 days from the start of the protocol. APACHE II will calculate the risk, SOFA, MEXSOFA, measurements of IL-8, vitamin C, NO3 / NO2, LOP, total antioxidant capacity will be carried out at baseline and 48 hours. SOFA will be calculated for seven days, in addition to days of hospitalization, days of mechanical ventilation. It was evaluated 28 days after discharge by telephone.
In this study, the investigators are attempting to evaluate the influence of socio-economic factors on the functional recovery (physical and psychological) of patients who developed ARDS after a COVID-19 infection, with the aim of offering personalized medical and social follow-up and support measures in order to avoid medium- and long-term complications, which can result in handicaps, reduced quality of life, and a higher risk of death.
to evaluate the effect of use of bronchoscopy in the course of sepsis, weaning from the ventilator, duration of ICU stays and mortality rate in septic patients with ARDS due to VAP.
The world is currently facing a pandemic with the coronavirus (SARS-CoV-2) which leads to the disease of COVID-19. Risk factors for a poor outcome of COVID-19 have so far been identified as older age and co-morbidity including chronic respiratory conditions such as chronic obstructive pulmonary disease (COPD) and current smoking status. Previous studies found, that vitamin D deficiency is more prevalent among patients with these risk factors. There are observational studies reporting independent associations between low serum concentrations of 25-hydroxyvitamin D (the major circulating vitamin D metabolite) and susceptibility to acute respiratory tract infection. Vitamin D substitution in patients with COVID-19 who show a vitamin D deficiency should therefore be investigated for efficacy and safety. The study is designed as a randomized, placebo-controlled, double blind study. The objective of the study is to test the hypothesis that patients with vitamin D deficiency suffering from COVID-19 treated under standardized conditions in hospital will recover faster when additionally treated with a single high dose of vitamin D compared to standard treatment only.
This is a placebo-controlled, double blind, randomized, Phase II dose escalation study intended to evaluate the potential safety and efficacy of tenecteplase for the treatment of COVID-19 associated respiratory failure. The hypothesis is that administration of the drug, in conjunction with heparin anticoagulation, will improve patients' clinical outcomes.
ULSC-CV-01 is a clinical trial that comprises both Phase 1 and Phase 2a, which will be conducted sequentially. This trial will evaluate the safety and potential efficacy of allogeneic Umbilical Cord Lining Stem Cells (ULSC), which are a type of umbilical cord tissue derived mesenchymal stem cells (MSC), with intravenous (IV) administration in hospitalized patients with acute respiratory distress syndrome (ARDS) due to COVID-19.