View clinical trials related to Anaplastic Astrocytoma.
Filter by:This phase I/II trial studies the side effects and best dose of vorinostat and to see how well it works when given together with radiation therapy followed by maintenance therapy with vorinostat in treating younger patients with newly diagnosed diffuse intrinsic pontine glioma (a brainstem tumor). Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving vorinostat together with radiation therapy may kill more tumor cells.
The high-grade malignant brain tumors, glioblastoma multiforme (GBM) and anaplastic astrocytoma (AA), comprise the majority of all primary brain tumors in adults. This group of tumors also exhibits the most aggressive behavior, resulting in median overall survival durations of only 9-12 months for GBM, and 3-4 years for AA. Initial therapy has consisted of surgical resection, external beam radiation or both. More recently, a Phase 3 clinical published by Stupp et al in 2005 showed a benefit for using radiotherapy plus concomitant and adjuvant Temozolomide. Still, all patients experience a recurrence after first-line therapy, so improvements in both first-line and salvage therapy are critical to enhancing quality-of-life and prolonging survival. It is unknown if currently used intravenous (IV) therapies even cross the blood brain barrier (BBB). Superselective Intra-arterial Cerebral Infusion (SIACI) is a technique that can effectively increase the concentration of drug delivered to the brain while sparing the body of systemic side effects. One currently used drug called Temozolomide (Temodar) has been shown to be active in human brain tumors but its actual central nervous system (CNS) penetration is unknown. This phase I clinical research trial will test the hypothesis that following the standard 42 day Temozolomide/radiotherapy regimen, Temozolomide can be safely used by direct intracranial superselective intra-arterial cerebral infusion (SIACI) up to a dose of 250mg/m2, followed by the standard maintenance cycle of temozolomide to ultimately enhance survival of patients with newly diagnosed GBM/AA. The investigators will determine the toxicity profile and maximum tolerated dose (MTD) of SIACI Temozolomide. The investigators expect that this project will provide important information regarding the utility of SIACI Temozolomide therapy for malignant gliomas, and may alter the way these drugs are delivered to our patients in the near future.
This is a single center Phase I study to determine the safety and maximum tolerated dose (MTD) of autologous dendritic cells (DCs) loaded with allogeneic brain tumor stem cells administered as a vaccination in children and adults with recurrent brain tumors. Once the MTD has been determined, we will conduct a phase II study to determine efficacy. Clinical trials that utilize DCs for immunotherapy have demonstrated significant survival benefit for patients who exhibit robust immune responses against tumor cells. Unfortunately, at the present time the majority of tumor patients are unable to mount an adequate immune response and thus succumb to their tumors. We postulate that the inability to generate an appropriate immune response in these patients is due to a lack of sufficient numbers of appropriate T cells due to an inadequate source of tumor antigens.
This is a multicenter, open-label, ascending-dose trial of the safety and tolerability of increasing doses of Toca 511, a Retroviral Replicating Vector (RRV), administered to patients with recurrent high grade glioma (rHGG) who have undergone surgery followed by adjuvant radiation therapy and chemotherapy. Patients will receive Toca 511 either via stereotactic, transcranial injection into their tumor or as an intravenous injection given daily for 3 & 5 days, depending on cohort. Approximately 3-4 weeks following injection of the RRV, treatment with Toca FC, an antifungal agent, will commence and will be repeated approximately every 6 weeks until study completion. After completion of this study, all patients will be eligible for enrollment and encouraged to enter a long-term continuation protocol that enables additional Toca FC treatment cycles to be given, as well as permits the collection of long-term safety and survival data.
RATIONALE: Pioglitazone hydrochloride may be effective treatment for cognitive dysfunction caused by radiation therapy. PURPOSE: This phase I trial is studying the side effects and best dose of pioglitazone hydrochloride in preventing radiation-induced cognitive dysfunction in treating patients with brain tumors.
The purpose of this research study to determine if treating recurrent malignant gliomas with another person's (donor) immune system cells known as aCTL cells, will be safe. This study will also try to determine if persons who receive aCTL's are more or less likely to survive their brain tumor than persons who had similar tumors in the past. Approximately 15 patients will be enrolled at UCLA.
RATIONALE: Ritonavir and lopinavir may stop the growth of gliomas by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. PURPOSE: This phase II trial is studying how well giving ritonavir together with lopinavir works in treating patients with progressive or recurrent high-grade glioma.
RATIONALE: Biological therapies, such as cellular adoptive immunotherapy, may stimulate the immune system in different ways and stop tumor cells from growing. Donor T cells that are treated in the laboratory may be effective treatment for malignant glioma. Aldesleukin may stimulate the white blood cells to kill tumor cells. Combining different types of biological therapies may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best way to give therapeutic donor lymphocytes together with aldesleukin in treating patients with stage III or stage IV malignant glioma.
Background: - Growth of new blood vessels (angiogenesis) provides many tumors, including brain tumors, with needed nutrients and oxygen for cancer cells to survive. One possible treatment for different kinds of cancer involves treatment with drugs that slow or stop angiogenesis and prevent further tumor growth. - Vandetanib is an oral medication known to block angiogenesis and has shown significant antitumor activity in laboratory and animal studies. Vandetanib appears to be well tolerated by patients at specific daily doses. - Carboplatin is a drug that interrupts division of cancer cells and has been shown to be a useful drug in treatment of tumors known as gliomas. It is a useful drug for treating brain tumors, but researchers are interested in gathering more information about how it works as a treatment for patients who have not responded to initial surgery, radiation, or chemotherapy. Objective: - To determine the safety and effectiveness of vandetanib and carboplatin, given together or sequentially, against recurrent high-grade gliomas. Eligibility: - Adults diagnosed with a malignant glioma who have received standard treatments that no longer appear to be effective. Design: - Patients will be assigned to one of two groups. Group 1 patients (combination group) will receive oral vandetanib for 28 days and intravenous (IV) carboplatin (once at the beginning of the 28-day cycle). Group 2 patients (sequential group) will receive IV carboplatin alone (once at the beginning of the 28-day cycle) and then oral vandetanib (300 mg daily) for 28 days if the tumor grows or the patient develops unacceptable carboplatin toxicity. - Treatment will continue in 28-day cycles for 1 year for both groups. - Patients will undergo a number of tests and procedures during the treatment cycle, including physical examinations, routine laboratory tests, electrocardiograms, and magnetic resonance imaging (MRI) scans - At the end of 1 year of treatment, patients will be reevaluated for possible continuation of drug therapy.
The high-grade malignant brain tumors, glioblastoma multiforme (GBM) and anaplastic astrocytoma (AA), comprise the majority of all primary brain tumors in adults. This group of tumors also exhibits the most aggressive behavior, resulting in median overall survival durations of only 9-12 months for GBM, and 3-4 years for AA. Initial therapy consists of either surgical resection, external beam radiation or both. All patients experience a recurrence after first-line therapy, so improvements in both first-line and salvage therapy are critical to enhancing quality-of-life and prolonging survival. It is unknown if currently used intravenous (IV) therapies even cross the blood brain barrier (BBB). Superselective Intraarterial Cerebral Infusion (SIACI) is a technique that can effectively increase the concentration of drug delivered to the brain while sparing the body of systemic side effects. One currently used drug called, Bevacizumab (Avastin) has been shown to be active in human brain tumors but its actual CNS penetration is unknown. This phase I clinical research trial will test the hypothesis that Bevacizumab can be safely used by direct intracranial superselective intraarterial infusion up to a dose of 10mg/kg to ultimately enhance survival of patients with relapsed/refractory GBM/AA. By achieving the aims of this study we will determine the toxicity profile and maximum tolerated dose (MTD of SIACI Bevacizumab. We expect that this project will provide important information regarding the utility of SIACI Bevacizumab therapy for malignant glioma, and may alter the way these drugs are delivered to our patients in the near future.