View clinical trials related to Anaplastic Astrocytoma.
Filter by:The goal of this study is to determine the response of the study drug loratinib in treating children who are newly diagnosed high-grade glioma with a fusion in ALK or ROS1. It will also evaluate the safety of lorlatinib when given with chemotherapy or after radiation therapy.
As a part of molecular imaging, many PET tracers have been investigated in this regard. Those include 18F-FDG being glucose analogue, 18F-FLT representing nucleoside metabolism, and 18F-FDOPA, 18F-FET, 11C-MET as amino acids analogues. Among these, 18F-FDG is the most commonly used tracer due to its broader use and easy availability. However, high physiological uptake in the brain is a significant limitation. The main limitation of other tracers is the need for onsite cyclotrons for their production, making their availability difficult. So, the search for an ideal modality is still ongoing, and the latest addition to this search is a radio ligand labeled Prostate Specific Membrane Antigen (PSMA). It is a new but potentially promising radiotracer, currently showing its utility in different malignancies. Investigators, therefore, aim to identify whether Ga-68 PSMA PET-CT has better diagnostic accuracy in the detection of recurrent gliomas than conventional imaging modalities.
The goal of this study is to determine the efficacy of the study drugs ribociclib and everolimus to treat pediatric and young adult patients newly diagnosed with a high-grade glioma (HGG), including DIPG, that have genetic changes in pathways (cell cycle, PI3K/mTOR) that these drugs target. The main question the study aims to answer is whether the combination of ribociclib and everolimus can prolong the life of patients diagnosed with HGG, including DIPG.
The goal of this study is to perform genetic sequencing on brain tumors from children, adolescents, and young adult patients who have been newly diagnosed with a high-grade glioma. This molecular profiling will decide if patients are eligible to participate in a subsequent treatment-based clinical trial based on the genetic alterations identified in their tumor.
The purpose of the study is to determine the safety and efficacy of intracranially implanted Carmustine in the treatment of patients with primary malignant glioma.