Clinical Trials Logo

Anaplastic Astrocytoma clinical trials

View clinical trials related to Anaplastic Astrocytoma.

Filter by:
  • Active, not recruiting  
  • Page 1 ·  Next »

NCT ID: NCT05934630 Active, not recruiting - Clinical trials for Glioblastoma Multiforme

Testing Cerebrospinal Fluid for Cell-free Tumor DNA in Children, Adolescents, and Young Adults With Brain Tumors

Start date: July 12, 2023
Phase:
Study type: Observational

Recent advances in technology have allowed for the detection of cell-free DNA (cfDNA). cfDNA is tumor DNA that can be found in the fluid that surrounds the brain and spinal cord (called cerebrospinal fluid or CSF) and in the blood of patients with brain tumors. The detection of cfDNA in blood and CSF is known as a "liquid biopsy" and is non-invasive, meaning it does not require a surgery or biopsy of tumor tissue. Multiple studies in other cancer types have shown that cfDNA can be used for diagnosis, to monitor disease response to treatment, and to understand the genetic changes that occur in brain tumors over time. Study doctors hope that by studying these tests in pediatric brain tumor patients, they will be able to use liquid biopsy in place of tests that have more risks for patients, like surgery. There is no treatment provided on this study. Patients who have CSF samples taken as part of regular care will be asked to provide extra samples for this study. The study doctor will collect a minimum of one extra tube of CSF (about 1 teaspoon or 5 mL) for this study. If the patients doctor thinks it is safe, up to 2 tubes of CSF (about 4 teaspoons or up to 20 mL) may be collected. CSF will be collected through the indwelling catheter device or through a needle inserted into the lower part of the patient's spine (known as a spinal tap or lumbar puncture). A required blood sample (about ½ a teaspoon or 2 3 mL) will be collected once at the start of the study. This sample will be used to help determine changes found in the CSF. Blood will be collected from the patient's central line or arm as a part of regular care. An optional tumor tissue if obtained within 8 weeks of CSF collection will be collected if available. Similarities between changes in the DNA of the tissue that has caused the tumor to form and grow with the cfDNA from CSF will be compared. This will help understand if CSF can be used instead of tumor tissue for diagnosis. Up to 300 people will take part in this study. This study will use genetic tests that may identify changes in the genes in the CSF. The report of the somatic mutations (the mutations that are found in the tumor only) will become part of the medical record. The results of the cfDNA sequencing will be shared with the patient. The study doctor will discuss what the results mean for the patient and patient's diagnosis and treatment. There will not be any germline sequencing results reported and these will not be disclosed to the patient, patient's clinician or be recorded in patient medical record. Patient may be monitored on this study for up to 5 years.

NCT ID: NCT04295759 Active, not recruiting - Clinical trials for Glioblastoma Multiforme

INCB7839 in Treating Children With Recurrent/Progressive High-Grade Gliomas

Start date: July 27, 2020
Phase: Phase 1
Study type: Interventional

This is a multicenter phase 1 trial of INCB7839 for children with recurrent or progressive high-grade gliomas, including, but not limited to, diffuse intrinsic pontine glioma (DIPG) and other diffuse midline gliomas (DMGs), after upfront therapy.

NCT ID: NCT03581292 Active, not recruiting - Glioblastoma Clinical Trials

Veliparib, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed Malignant Glioma Without H3 K27M or BRAFV600 Mutations

Start date: November 6, 2018
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well veliparib, radiation therapy, and temozolomide work in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations. Poly adenosine diphosphate (ADP) ribose polymerases (PARPs) are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations compared to radiation therapy and temozolomide alone.

NCT ID: NCT03561207 Active, not recruiting - Ovarian Cancer Clinical Trials

3D Prediction of Patient-Specific Response

3D-PREDICT
Start date: June 11, 2018
Phase:
Study type: Observational [Patient Registry]

This is a prospective, non-randomized, observational registry study evaluating a patient-specific ex vivo 3D (EV3D) assay for drug response using a patient's own biopsy or resected tumor tissue for assessing tissue response to therapy in patients with advanced cancers, including ovarian cancer, high-grade gliomas, and high-grade rare tumors.

NCT ID: NCT03180502 Active, not recruiting - Glioma Clinical Trials

Proton Beam or Intensity-Modulated Radiation Therapy in Preserving Brain Function in Patients With IDH Mutant Grade II or III Glioma

Start date: August 2, 2017
Phase: Phase 2
Study type: Interventional

This randomized phase II clinical trial studies the side effects and how well proton beam or intensity-modulated radiation therapy works in preserving brain function in patients with IDH mutant grade II or III glioma. Proton beam radiation therapy uses tiny charged particles to deliver radiation directly to the tumor and may cause less damage to normal tissue. Intensity-modulated or photon beam radiation therapy uses high-energy x-ray beams shaped to treat the tumor and may also cause less damage to normal tissue. Patients will be more likely to be randomized to proton beam radiation therapy. It is not yet known if proton beam radiation therapy is more effective than photon-based beam intensity-modulated radiation therapy in treating patients with glioma.

NCT ID: NCT02796261 Active, not recruiting - Clinical trials for Anaplastic Astrocytoma

Study to Evaluate Eflornithine + Lomustine vs Lomustine in Recurrent Anaplastic Astrocytoma (AA) Patients

STELLAR
Start date: July 2016
Phase: Phase 3
Study type: Interventional

The purpose of this study is to compare the efficacy and safety of eflornithine in combination with lomustine, compared to lomustine taken alone, in treating patients whose anaplastic astrocytoma has recurred/progressed after radiation and temozolomide chemotherapy.

NCT ID: NCT02101905 Active, not recruiting - Clinical trials for Recurrent Glioblastoma

Lapatinib Ditosylate Before Surgery in Treating Patients With Recurrent High-Grade Glioma

Start date: March 13, 2014
Phase: Phase 1
Study type: Interventional

This pilot phase I clinical trial studies how well lapatinib ditosylate before surgery works in treating patients with high-grade glioma that has come back after a period of time during which the tumor could not be detected. Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01204684 Active, not recruiting - Glioblastoma Clinical Trials

Dendritic Cell Vaccine for Patients With Brain Tumors

Start date: October 8, 2010
Phase: Phase 2
Study type: Interventional

The main purpose of this study is to evaluate the most effective immunotherapy vaccine components in patients with malignant glioma. Teh investigators previous phase I study (IRB #03-04-053) already confirmed that this vaccine procedure is safe in patients with malignant brain tumors, and with an indication of extended survival in several patients. However, the previous trial design did not allow us to test which formulation of the vaccine was the most effective. This phase II study will attempt to dissect out which components are most effective together. Dendritic cells (DC) (cells which "present" or "show" cell identifiers to the immune system) isolated from the subject's own blood will be treated with tumor-cell lysate isolated from tumor tissue taken from the same subject during surgery. This pulsing (combining) of antigen-presenting and tumor lysate will be done to try to stimulate the immune system to recognize and destroy the patient's intracranial brain tumor. These pulsed DCs will then be injected back into the patient intradermally as a vaccine. The investigators will also utilize adjuvant imiquimod or poly ICLC (interstitial Cajal-like cell) in some treatment cohorts. It is thought that the host immune system might be taught to "recognize" the malignant brain tumor cells as "foreign" to the body by effectively presenting unique tumor antigens to the host immune cells (T-cells) in vivo.

NCT ID: NCT00995007 Active, not recruiting - Clinical trials for Glioblastoma Multiforme

A Randomized Phase II Trial of Vandetanib (ZD6474) in Combination With Carboplatin Versus Carboplatin Alone Followed by Vandetanib Alone in Adults With Recurrent High-Grade Gliomas

Start date: September 2009
Phase: Phase 2
Study type: Interventional

Background: - Growth of new blood vessels (angiogenesis) provides many tumors, including brain tumors, with needed nutrients and oxygen for cancer cells to survive. One possible treatment for different kinds of cancer involves treatment with drugs that slow or stop angiogenesis and prevent further tumor growth. - Vandetanib is an oral medication known to block angiogenesis and has shown significant antitumor activity in laboratory and animal studies. Vandetanib appears to be well tolerated by patients at specific daily doses. - Carboplatin is a drug that interrupts division of cancer cells and has been shown to be a useful drug in treatment of tumors known as gliomas. It is a useful drug for treating brain tumors, but researchers are interested in gathering more information about how it works as a treatment for patients who have not responded to initial surgery, radiation, or chemotherapy. Objective: - To determine the safety and effectiveness of vandetanib and carboplatin, given together or sequentially, against recurrent high-grade gliomas. Eligibility: - Adults diagnosed with a malignant glioma who have received standard treatments that no longer appear to be effective. Design: - Patients will be assigned to one of two groups. Group 1 patients (combination group) will receive oral vandetanib for 28 days and intravenous (IV) carboplatin (once at the beginning of the 28-day cycle). Group 2 patients (sequential group) will receive IV carboplatin alone (once at the beginning of the 28-day cycle) and then oral vandetanib (300 mg daily) for 28 days if the tumor grows or the patient develops unacceptable carboplatin toxicity. - Treatment will continue in 28-day cycles for 1 year for both groups. - Patients will undergo a number of tests and procedures during the treatment cycle, including physical examinations, routine laboratory tests, electrocardiograms, and magnetic resonance imaging (MRI) scans - At the end of 1 year of treatment, patients will be reevaluated for possible continuation of drug therapy.

NCT ID: NCT00114309 Active, not recruiting - Clinical trials for Glioblastoma Multiforme

131-I-TM-601 Study in Adults With Recurrent High-Grade Glioma

Start date: November 2004
Phase: Phase 2
Study type: Interventional

This drug is being developed to treat a type of brain cancer, glioma. This study was developed to evaluate the safety, time to disease progression and survival rates after treatment.