Clinical Trials Logo

Anaplastic Astrocytoma clinical trials

View clinical trials related to Anaplastic Astrocytoma.

Filter by:

NCT ID: NCT01836549 Terminated - Glioblastoma Clinical Trials

Imetelstat Sodium in Treating Younger Patients With Recurrent or Refractory Brain Tumors

Start date: March 2013
Phase: Phase 2
Study type: Interventional

This molecular biology and phase II trial studies how well imetelstat sodium works in treating younger patients with recurrent or refractory brain tumors. Imetelstat sodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01721577 Terminated - Glioblastoma Clinical Trials

Phase I/II Trial of AXL1717 in the Treatment of Recurrent Malignant Astrocytomas

AXL1717
Start date: December 2012
Phase: Phase 1/Phase 2
Study type: Interventional

This is a single-center, open-label, non-randomized, Phase I/IIa study to investigate the safety, tolerability, and antitumor efficacy of AXL1717 (picropodophyllin as active agent formulated in an oral suspension; PPP) in patients with recurrent malignant astrocytomas (glioblastoma, gliosarcoma, anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic oligoastrocytoma, and anaplastic ependymoma). Patients will be treated for up to 5 cycles. A treatment cycle is defined as 28 days+7 days rest (28+7 days during cycle 1 to 4, and 28 days during cycle 5). The following cycle will not be started until the treatment continuation criteria are fulfilled. Concomitant supportive therapies will be allowed.

NCT ID: NCT01281982 Terminated - Clinical trials for Glioblastoma Multiforme

(11C)dLop as a Marker of P-Glycoprotein Function in Patients With Gliomas

Start date: January 13, 2011
Phase:
Study type: Observational

Background: - The blood-brain barrier helps to protect the central nervous system (brain and spinal cord) from harmful toxins, but also prevents potentially useful chemotherapy from reaching brain tumors. The barrier is formed by tight connections between blood vessel cells and molecules found on the surface of brain blood vessels such as Permeability-glycoprotein (Pgp). Pgp may influence whether patients with brain tumors known as gliomas respond to chemotherapy and what side effects they may experience. The compound (11C)N-desmethyl-loperamide ((11C)dLop) reacts to Pgp molecules, and therefore may be used with positron emission tomography (PET) imaging to study the blood brain barrier. Objectives: - To study the ability of PET imaging with (11C)dLop to evaluate the blood brain barrier in brain tumor patients. Eligibility: - Individuals at least 18 years of age who have a brain tumor with characteristics that may be imaged with techniques such as magnetic resonance imaging (MRI) andPET. Design: - Participants will be screened with a full physical examination and medical history, blood and urine tests, and tumor imaging studies (fluorodeoxyglucose PET and MRI scans with contrast agent). - The (11C)dLop scan will take 1 hour to perform. Participants will be asked to return for blood and urine tests approximately 24 hours after the PET scan. - Participants will have followup visits at least every 4 months by repeating a complete history and physical exam and brain MRI. Participants may have repeat scans with (11C)dLop at various points in the course of cancer treatment, but will not have these scans more than twice in a 12-month period. - Participants will be followed for as long as possible during treatment to see if imaging with (11C)dLop correlates with response to the treatments.

NCT ID: NCT01227434 Terminated - Glioblastoma Clinical Trials

A Study of PD 0332991 in Patients With Recurrent Rb Positive Glioblastoma

PD0332991
Start date: September 2010
Phase: Phase 2
Study type: Interventional

This study will determine the efficacy of the small molecule CDK4/6 inhibitor PD 0332991 (as measured by progression free survival at 6 months) in patients with recurrent glioblastoma multiforme or gliosarcoma who are Rb positive. A total of 30 patients will be treated; 15 will undergo a planned surgical resection and receive drug for 7 days prior to surgery, followed by drug after recovery from surgery, and the other 15 patients will receive drug without a planned surgical procedure.

NCT ID: NCT01095094 Terminated - Glioblastoma Clinical Trials

Ritonavir and Lopinavir in Treating Patients With Progressive or Recurrent High-Grade Glioma

Start date: January 2009
Phase: Phase 2
Study type: Interventional

RATIONALE: Ritonavir and lopinavir may stop the growth of gliomas by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. PURPOSE: This phase II trial is studying how well giving ritonavir together with lopinavir works in treating patients with progressive or recurrent high-grade glioma.

NCT ID: NCT00761280 Terminated - Glioblastoma Clinical Trials

Efficacy and Safety of AP 12009 in Patients With Recurrent or Refractory Anaplastic Astrocytoma or Secondary Glioblastoma

SAPPHIRE
Start date: December 2008
Phase: Phase 3
Study type: Interventional

In this multinational Phase III study the efficacy and safety of 10 µM AP 12009 is compared to standard chemotherapy (temozolomide or BCNU or CCNU) in adult patients with confirmed recurrent or refractory anaplastic astrocytoma (WHO grade III) or secondary glioblastoma (WHO grade IV).

NCT ID: NCT00473408 Terminated - Clinical trials for Glioblastoma Multiforme

The Effect of Radiotherapy and Temozolomide on the Tumor Vasculature and Stem Cells in Human High-grade Astrocytomas

Gliomstudien
Start date: March 2007
Phase: N/A
Study type: Observational

The purpose of the current trial is to explore whether the standard treatment with radiotherapy and temozolomide affect the tumor vasculature in patients with high-grade astrocytomas. If vascular effects are identified, future clinical trials can be proposed wherein anti-angiogenic agents are added to increase patient survival.

NCT ID: NCT00062504 Terminated - Clinical trials for Glioblastoma Multiforme

Phase 2 Trial Using Talampanel in Patients With Recurrent High Grade Gliomas

Start date: July 2003
Phase: Phase 2
Study type: Interventional

To analyze the effect of Talampanel on progression free survival in patients with recurrent high grade gliomas.

NCT ID: NCT00035373 Terminated - Clinical trials for Anaplastic Astrocytoma

Eligibility Screening of Patients With Central Nervous System Tumors for the National Cancer Institute s (NCI) Clinical Research Protocols

Start date: April 19, 2002
Phase:
Study type: Observational

The objective of this study is to evaluate patients with tumors of the central nervous system (CNS) for eligibility in the National Cancer Institute s research studies. These patients will undergo a series of procedures, usually including a complete medical history and physical examination; laboratory testing of blood, CSF, urine, bone marrow, or other samples; an evaluation of tumor location and size by x-rays, CT (computed tomography) or MRI (magnetic resonance imaging) scans, or nuclear medicine scans; lumbar puncture; electrocardiogram and echocardiogram; and procedures to evaluate the function of specific organs. A bone marrow biopsy is occasionally performed. Research samples may also be collected and stored to avoid having to do a painful test more than once. Tissue specimens collected during this process may be stored and used in future studies. Patients of both genders, any age, and all racial and ethnic groups with tumors of the CNS or a history of a CNS tumor are eligible. Up to 100 people are expected to participate. The physician will discuss the results of these procedures with the patient and his or her family. On the basis of the eligibility screening and the patient s wishes, the patient may then be enrolled in a primary research protocol.

NCT ID: NCT00031538 Terminated - Glioma Clinical Trials

Genetic Analysis of Brain Tumors

Start date: March 1, 2002
Phase:
Study type: Observational

This study will analyze tissue and blood samples from patients with gliomas (a type of brain tumor) to develop a new classification system for these tumors. Tumor classification can help guide treatment, in part by predicting how aggressive a tumor may be. Gliomas are currently classified according to their grade (how quickly they may grow) and the type of cells they are composed of. This system, however, is not always accurate, and sometimes two tumors that appear to be identical under the microscope will have very different growth patterns and responses to treatment. The new classification system is based on tumor genes and proteins, and may be used in the future to better predict a given tumor s behavior and response to therapy. Patients with evidence of a primary brain tumor and patients with a known glioma who will be undergoing surgery to remove the tumor may participate in this study. A sample of tumor tissue removed in the course of a participant s normal clinical care will be used in this study for laboratory analysis of genes and chromosome abnormalities. A small blood sample will also be collected for genetic analysis. In addition, clinical information on patients condition and response to treatment will be collected every 6 months over several years. This information will include findings from physical and neurologic examinations, radiographic findings, and response to therapy, including surgery, radiation and chemotherapy.